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Calculations are undertaken to study the approach to equilibrium for systems of realitfasion equations

on bounded domains. It is demonstrated that a number of systems approach equilibrium along attractive
low-dimensional manifolds over significant ranges of parameter space. Numerical methods for generating
the manifolds are adapted from methods that were developed for systems of ordinary differential equations.
The truncation of the infinite spectrum of the partial differential equations makes it necessary to devise a new
version of one of these methods, the well-known algorithm of Maas and Pope.

I. Introduction and time? and although it is important to understand the way
that chemical-kinetic manifolds change due to transport pro-
cesses, these manifolds are only one type of manifold that can
be used to reduce the computational effort. Other types of low-
dimensional manifolds provide greater computational savings,
and these were studied in the first papdhey go beyond the
manifolds discussed in those earlier references in that they
)provide a reduction in both the number of species and the

be obtained numerically and has two goals: (1) the demonstra-num_ber_ of spatlal points that need to_ be followed. They are
tion that attractive low-dimensional manifolds are common over dualitatively different than the ones discussed for systems of

large regions of parameter space and (2) the development Ofcom_plex kineti_cs, _as well as the modified versions of the
methods for generating such manifolds. manifolds studied in refs 10, 17, 21, and 22, and are related to

The accurate modeling of reactive flows is computationally inertial manifolds that have been studied for nonlinear partial

intensive? and it is useful to have the means to gain compu- differential equations?24

tational savings. One way to do this is to develop methods for ~ This paper continues the investigations of ref 1. It starts in
reducing the effort needed to model complex chemical kinetics, section Il by studying numerically a reversible association
an important and time-consuming part of the modeling of reaction with diffusion. This section investigates the conditions
reactive flows2 Chemical-kinetic systems often have a large that lead to attractive one- and two-dimensional manifolds near
range of time scales with the result that these systems approactequilibrium and then presents calculations demonstrating that
equilibrium along low-dimensional surfaces (manifolds) in the these manifolds appear to exist well away from equilibrium.
phase space of the species. Because these manifolds have mucbection Il then extends the analysis of section Il, by adapting
lower dimension than the original system, they provide the two methods for the study of low-dimensional manifolds for
potential for computational savings. Many researchers have ordinary differential equations. The first is the algorithm of Maas
studied these manifolds, with early reviews published elsewhere and Popé,and the second is the predicterorrector method
and discussed in the first papefhese manifolds are improve-  of ref 14. For systems of reactiemiffusion equations, no
ments to steady-state approximatibasd are based on a better  significant modification of the predictercorrector method is
representation of the true dynamical nature of the kinetics. The necessary, but the Maa®ope algorithm does require modifica-
work by Fraser and Rousskl] Lam and Goussiand Maas  tions. In addition, because the systems studied here are large,

and Pop& ™ are important examples of how dynamical an effort is made to make the algorithm more efficient, and
information can be used to define low-dimensional manifolds  thjs is also described in section Ill. The methods described in

in kinetics models. These works have motivated many offets.  gaction 11l are tested in section IV. The first test is for the

Reference 14 analyzes some of these methods in detail. nonlinear reactiordiffusion system of the first papethat has

The methods outlined above rely on the reduction of the an exact solution. Section IV also discusses the accuracy of the
number of species that need to be followed to accurately model methods for the system of section II.

complex kinetics. That work naturally led to studies investigating
the way transport processes important in the modeling of reactive
flows could affect the reduction, and there have been several
studies of this issu&:17-21.22Reactive flows are solved in space

A previous papérdemonstrated how low-dimensional mani-
folds arise in systems of reactiedliffusion equations. Most of
the systems studied in ref 1 could be solved analytically as a
sum over basis states. The purpose of the first paper was to
explore fundamental aspects of these low-dimensional mani-
folds, so numerical complexity was downplayed. The present
paper extends the analysis to systems whose solutions can onl

Sections V and VI extend the analysis to two systems studied
previously by others. Section V studies the chain-branching
system of ref 22 and section VI studies ozone combustion with
the model of refs 17 and 25. These sections demonstrate that

" Part of the special issue “John C. Light Festschrift” low-dimensional manifolds are common over a broad range of
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9 9
with Diffusion 8_t2 = 2ky, — 2ky2 + D, Y.

A number of nonlinear systems have been studied numerically ¢
to investigate the finite-dimensional, attractive manifolds of ref where k; and k., are the forward and reverse reaction rate
1, and results for three of these are presented here, along withconstants, respectively, aryg andy. describe the densities or
a further investigation of the nonlinear system of section IV of concentrations of A and B, respectively. In general, this system
the first papet. The systems have the following form cannot be solved analytically. In this paper, boundary conditions
are fixed in the same manner as in ref 1

II. Numerical Example: Reversible Association Reaction y.
(2.5b)

oy, %y,
=G =F{y})+D— (2.1) 9y,
at : x Yi(Xx=0) =y, &(X =1)=0 (2.6a)
where the brackets refer to a set of species variables, for ay
example, density, mass fraction, mole fraction, etc. The first Yo(X = 0) =y, a—z(xz 1)=0 (2.6b)

term on the right refers to the reaction system, and the second
term describes diffusion. All kinetics studied in this paper are
isothermal.

This paper studies four systems, and there is a qualitative 2yeq
difference among them, characterized by the difference between —k,y+ |<2(y’3‘*)2 +D,— (2.7a)
the systems of refs 17 and 22. The system of ref 17 and section
VI has a reaction componeri, which possesses a constant of
motion

The equilibrium state of the system in eq 2.2 is defined by

Y5
0= 2kyy3* = 2k,(¥;)* + D, e

Z mF, =0 (2.2)

In general, eq 2.7 must also be solved numerically. Two
where them values are integers. This is a common feature of techniques are used to solve for the equilibrium states of the
reaction mechanisnisyhere there can be several constants. The systems studied here. They are a NewtBaphson procedufe
system of ref 22 and section V does not possess such a constanaind the “shooting” techniqu.The latter technique is less stable
Under conditions where there is a constant, the components inand was only used in this section. The Newtdtaphson
eq 2.1 can be summed procedure was used for the cases in sections V and VI.

Zy ForD; = D, = D in eq 2.5 the following is true
d i

(2.7b)

w_ z mD, — (2.3a) oW Pw
at 4 532 ' i Da_x2 (2.8a)
with with
w="% my, (2.3b) w=2y,ty, (2.8b)

Near equilibrium the dynamics can be solved by lineariza-

For systems where the values are equal, eq 2.3a reduces . - S O .
tion.28 A displacement away from equilibrium in function space

to a diffusion equation

is described
33"t"— D &’;’ D,=D,=D (2.30) Ay + oy
at B
When D is small, eq 2.3c describes the slowest motion. For ) 82(y§q+ oy,)
systems with small values of nearly equBl, the low- —Ky(y5 4 0yy) + Ky(y, " + dy,) +D1T (2.92)

dimensional manifolds observed near equilibrium are analogous
to the manifolds of eq 2.3c. There is no similar analogy for the A+ dy)
manifolds of the other two systems studied here. =2 Y

The model systems in this section and sectiod Were ot
studied in part because they correspond to the qualitative 82(y§q+ oy,)
difference for the systems in section V and VI. The system 2Ki(¥i"+ 0y1) — 2ky(¥;% + 0y,)" + D, ————— (2.9Db)
studied in this section has a constant, and the system studied in ox

section IV does not. _ o Because the displacememiganddy. are small ang,®4and
A. A System, Its Equilibrium States, and Their Stability. y,*4satisfy eqs 2.7a and 2.7b, the solution for the displacements
The reversible association reaction is found from
¥ 9*(dy)
= —k,0y; + 2ky(Y5)3y, + D; ——— 2.10a
has the following reactiondiffusion system ot Y A02)9%, Bx2 ( )
oy oy 3(9y,) o*(0y,)
a_tl = —ky, +k y2 +D,— XZ (2.5a) i 2k,0y; — 4ky(y5 )0y, + Dy——— 2 (2.10b)
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oy =5 (2.12)

Three sets of systems are studied in Figure 1 with different
values of¢;. Contours are plotted between 2.0 and 8.0 with an
interval of 1.0 for the bottom two panels and from 4.0 to 8.0 in
the top panel. Most contours are plotted with solid lines, but
the highest contours are drawn with a thicker solid line, and
the lowest contours are drawn with dotted lines. As evident in
Figure 1, there can be sharp corners in the contours because of
seams in the surface that result from the presence of two
different types of eigenvalues. Because there is no analytical
form for the eigenvalues, as there was for most of the cases
studied in ref 1, there has been no attempt here to generate these
seams.
The top panel of Figure 1 demonstrates that wieis small
there is a wide range of parameter space ea+ D, where
the manifolds are very attractive, and Figures 1b and 1c
demonstrate that there is a more narrow range of parameters
where attractiveness is large. There is a straightforward explana-
tion for the regions of parameter space where attractiveness is
: high. In the top panel of Figure 1, diffusion is slow compared
s 0 03 ! to reaction, and as long as the diffusion constants are not too
&/l different, the slow time scale is nearly purely diffusive (see
Figure 1. A series of contour plots of; (eq 2.12) describing the  ghove). In the bottom two panels diffusion competes with
'Totf:" ;;tr?r%“e‘:’e‘rtso;2%‘2%‘2&3:2”;: ’gﬂf"ﬁ"se fﬁ"ezéﬁ:‘ggﬁfoégggag?;tﬁr;éreaction, and a separation of time scales occurs for systems
the value offs, thex-axest,/Z:, andy-axests. The maximum contours where the fast reacting species are those that also diffuse raplqlly.
in each plot are at 8.0 and are drawn as thick solid lines. The minimum Therefore the regions of parameter space where the attraction
contours in each plot are drawn as dotted lines and have the value ofis highest are in the left bottom and right top of the middle and
4.0 in the top panel and 2.0 in the bottom two. The thin solid lines in bottom panels of Figure 1. Both of these situations were studied
the panels show the other contours that are at intervals of 1.0 betweenin ref 1 for other systems, where it was possible to derive
the minimum and the maximum contours. analytical values for the attractiveness globally.

) o Figure 2 shows the attractiveness of two-dimensional mani-
Although eqgs 2.10a and 2.10b are linear, the equilibrium fg|ds, defined as

distributions of they values have a spatial dependence, and it

is necessary to solve the equations numerically. Numerical Ay

solutions are accomplished with the discrete forms of eqs 2.10a =7 (2.13)

and 2.10b, as outlined in ref 1. A grid of 99 internal points

with a grid spacing of 0.01 was used for bgthandys.. Equation 2.13 states that the attractiveness of the two-
Reference 1 described the stability analysis of systems suchdimensional manifolds near equilibrium is estimated from the

as the one in eq 2.5 starting from eq 2.10. The right-hand sideratio of the second and third largest eigenvalues (both are

of eq 2.10 defines a Jacobian matrix whose eigenvalues andnegative). The top plot fof; = 0.1 is very flat, and the only

eigenvectors define the dynamics locally. For such systems, thecontour that appears is 2.0, which is plotted as a dotted line.

eigenvalue spectrum is infinite but is truncated, based on the (The maximum is 2.8.) The middle plot f@gs = 1 is less flat,

number of grid points. Because of the truncation of the matrix and there are five contour values shown with the minimum at

only the lowest eigenvalues of the matrix are converged to any 2.0 plotted as a dotted line and the maximum contour of 6.0 in

real degree. the bottom center plotted as a thicker solid line. The bottom
The rest of the analysis of the equilibrium state and its stability panel of Figure 2 fot; = 10 has a full range of contours from

follows from ref 1. A global analysis of the attractiveness of 2.0 to 8.0, as described above for the bottom two panels of

the linear manifolds near equilibrium is made in a similar Figure 1.

&

-1 i1 1 L

manner as ref 1. The following parameters are defined The contours in Figures 1 and 2 demonstrate that the system
in eq 2.5 has attractive one-dimensional manifolds with at-
D,+D, tractiveness greater than 8.0 near equilibrium for a large range
1= Kk (2.11a) of parameter space f@ = 0.1 and a much more limited range

for & = 1 and {3 = 10. Two-dimensional manifolds near
equilibrium are not very attractive over the whole range of
D, - D, parameter space @ = 0.1, but there are regions of parameter

b= ki + k ==t (2.11b) space where two-dimensional manifolds have high attractiveness
for & = 1 and & = 10. In general, regions where two-
k. —k dimensional manifolds are most attractive are those where the
3= 22 1< =<1 (2.11c) one-dimensional manifolds are least attractive and vice versa.
ki +k This effect was previously observed in the first pager several

systems.
Figure 1 describes the attractiveness near equilibrium using B. Numerical Study of the Approach to Low-Dimensional
the first two eigenvalues of the Jacobian matrix Manifolds. It requires a numerical method to solve the time
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. . ! - Figure 3. Results for a set of distributions plotted here usyagxs)/
Figure 2. A series of contour plots describing the valueaaf (eq ya(X,) projections. The systems studied in the panels correspond to one

2.13) that describes the local attractiveness of two-dimensional system from each of the panels of Figures 1 and 2, with the full list of

manifolds. The values of the parameters are the same as in Figure 1parameters noted in the text. In the top two pangls 0.59 andx, =
and the contour intervals are the same, but not all contours are presentg 18, In the bottom pane; = 0.19 andx, = 0.91.

because of the relative flatness of the top two panels. The dotted lines
in the top panel show, of 2.0, and the range of the contours in the 0.4 ; . . ;
middle panel is from 2.0 to 6.0, with the thicker curve in the bottom
middle of the panel having that value.

- ) 03 F -
development of the system, and a semidiscrete method is'uised.

The second derivatives in eq 2.5 are approximated with second-
order finite differences, and the system of ordinary differential S 02 .
equations is solved with a stiff integrator, LSOBE.

Results for one of the systems pictured in each panel of Figure 01
1 are presented in the panels of Figure 3. These plots describe
calculations on four initial distributions of; andy,. The top
panel shows results fot, &, £s) = (0.1, 0.036, 0.7), the middle O o2 os o6 oz 1
(1,—0.82,—0.92), and the bottom (16,8.6,—0.56). Thex-axes - ’ ‘ '
of the top two panels describe the valueypfat x = 0.59 and
they-axes indicate the value §$ atx = 0.18. The bottom plot
shows results foy; atx = 0.19 andy, atx = 0.91. The large Y
dots on all the panels show the value of the equilibrium
distributions at the selected coordinate pairs. The plots in Figure
3 show that the near-equilibrium attraction indicated in Figure
1 extends away from equilibrium, and the bottom two panels
indicate that the manifolds are nearly linear in those cases. The
plots in Figure 3 demonstrate that the time propagation of the
four initial distributions in each panel approach one-dimensional
manifolds.

The analysis of Figure 3 is extended in Figure 4 to a case
from Figure 2 for a two-dimensional manifold. Four distributions 0.74 0.84 oor !
are studied. The parameter values for this case@re&4, &s)
= (1, 0.04,—0.98). As indicated in the middle panel of Figure
1' this case has one-dimensional manifolds with very low Figure 4. Results from a set of four calculations plotted in these two
attractiveness, and the top panel of Figure 4 demonstrates thi?@nels for &1, &2, £3) = (1, 0.04,—-0.98). The top panel shows a two-

. . e 2 g dimensional projection fory:(Xg)/y2(X;), and the bottom a three-
with the propagation of four initial distributions. The projection dimensional projection foy(xs)/y2(x)/ys(x). The values of the spatial

gsed in thig case WX = 0.30))3/.2.(x.: 0_47), gnd.the large dot  ¢qordinates arexs = 0.30,x, = 0.47, andk, = 0.60. The plane plotted
is the projection of the equilibrium distribution. The plot in the bottom panel is formed from the first two eigenvectors whose
demonstrates that the distributions do not approach a one-eigenvalues aré, andA;.

dimensional manifold with any real degree of attraction.
Although one-dimensional manifolds are not very attractive value ofo; indicated in the middle plot of Figure 2 is 6.1. The
for this set of parameters, two-dimensional manifolds are. The bottom panel of Figure 4 shows a three-dimensional projection

Y1
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of the same set of results from the top plgt (x = 0.3)A, (X

= 0.47)k1 (x = 0.6)). Also included in the bottom panel of
Figure 4 is the plane defined by the two eigenvectors of the
Jacobian whose eigenvalues defmg(eq 2.12) for the one-

J. Phys. Chem. A, Vol. 110, No. 16, 2008261

whereL and R refer to left and right eigenvectors and the
superscript “T” refers to the transpose of matiix The
eigenvalues of are contained in the diagonal matrix

The first of the problems noted above arises because the

dimensional manifolds. These eigenvectors are the ones whoseigenvalues and eigenvectorsladre generated from a truncated
eigenvalues have the two least negative real parts. The bottomversion ofJ, and the higher eigenvalues and their respective
plot indicates that, while the trajectories in the top panel do not eigenvectors are generally not converged, making them very
approach a one-dimensional manifold, they do approach a planesensitive to small changes in the elementslofThis makes
indicative of a two-dimensional manifold. many algorithms for implementing the MaaBope approxima-
The results in this section and ref 1 demonstrate that theretion unstable. The second problem is due to the large number
are systems whose time development approaches low-dimen-of ordinary differential equations defined by a semidiscrete
sional manifolds on the way to equilibrium. The rest of the paper method. For only a few species and grids of a hundred points
will extend these earlier numerical and analytical studies. Two per species, the system of ordinary differential equations
methods of approximating low-dimensional manifolds away contains on the order of a few hundred equations and makes
from equilibrium will be developed, and their accuracy will be the Newtor-Raphson searches to satisfy the manifold condi-
investigated. These methods are general enough that they camions!! long.
be applied to more complex cases than those investigated here. These two problems have led to the development of an
alternate algorithm that only uses the relevant eigenvector space,
the “slow space™! The new algorithm is now described for

The low-dimensional manifolds studied here are difficult to  ©N€- af‘d two-di_mensi_onal _manifolds. Extensiqn to higher-
estimate with many of the techniques discussed in the Introduc- dimensional manifolds is straightforward. All manifolds studied
tion, because of the large dimensionality of the system of in this paper are one-dimensional and two-dimensional, because

ordinary differential equations used to approximate the reac- €Y are the most attractive for the systems studied. .
tion—diffusion systems, and only two techniques are used. One The Maas—Popt_a approximation starts V\.”th the assumption
is the predictor-corrector method of ref 14, and the other is that[ a system rapidly relaxes to a Iower—dlmensmna_l manifold
the Maas-Pope algorithm of refs-911. There have been no defined Iocal!y by a subsp'ace spanned by the s]ow e!genvectors
significant modifications of the predictercorrector method, and ~ ©f the Jacobian. These eigenvectors are the right eigenvectors
the description in ref 14 is sufficient. Significant modifications WN0se éigenvalues are those with negative real parts and the
have been made to the Ma&aBope algorithm, and they are now lO,WESt n magnitude. Amdlmen5|onal manlfqld In-am-
described. dl_mens_lonal s_p_acer(< n) |s_def|ned locally bym eigenvectors

One of the most complete descriptions of the numerical issues With this condition on the eigenvalues. In many versions of the
involved in applying the MaasPope algorithm is presented in algorithm, the condltlon IS |mplemerjted by mak[ng sure that
ref 11. As this reference makes clear, there are a number ofth® Space of “fast’ eigenvectors lies perpendicular to the
important problems that arise in trying to implement the manifold. The fast eigenvectors are the other eigenvectors that

algorithm. Two of these problems become particularly acute &€ not “slow”, that i_s those whose eigen_values have a larger
when studying the systems in this paper. magnitude. Becauskis a real general matrix, both the left and

Consider the Jacobian matrdx for the semidiscrete form of the right eigenvectors need to be used to satisfy this condition.

the reaction-diffusion system for the association reaction of FOr the systems studied here, such an algorithm is not stable,
section Il. It is written in a block forth because many of the fast eigenvalues are not converged

(problem 1), and a new algorithm is needed and is now

Ill. A New Version of the Maas—Pope Algorithm

gt gt developed.
= 3.1 Consider a system of ordinary differential equations, which
21 422
J=J in this paper is a spatially discrete approximation of a system

of partial differential equations. The time development of the
kth coordinate of thi:-dimensional system is

and has the following matrix elements

2D D
J&& =—k - — ‘]I]<-JI;+1 = &Ll =— dyy .
A ’ AX o Fdy}) 1=1—n (3.4)
Jir = 0 for all othermvalues (3.2a)
An element of the Jacobian matrix is defined as

Jil=2k, J% =0forall othermvalues (3.2b) oF,
ka = W (35)

m

= 2ky, 2 =0 for all othermvalues (3.2c)
The right and left eigenvectors of satisfy eq 3.3 and are

2D D orthogonal to each other in the following manner
JEE = —AkYy — — ‘]ﬁ(ﬂ = Jﬁ«l =
N ' AX L'R=1I (3.6)
11
Jim = 0 for all othermvalues (3.2d) wherel is the identity matrix. The elements Bfare written as
Because the Jacobian is a real general matrix, it possesses left Ren (3.7)

and right eigenvectors that are defined by the following matrix
equatiof! The elements of the right eigenvector whose eigenvalue is
negative and smallest in magnitude is labeled as “1”, and its

LTUR=A (3.3) elements are written as
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Ra (3.8) left eigenvectors are needed in the search based on eq 3.12.
The method requires matrix-vector operations, and second

The new version of the Maad?ope algorithm is implemented  derivatives are needed. Both of these have some computational
by finding the set ofy values in eq 3.4 whose “velocity” vector  cost, but this cost is low enough that there is typically a factor
(the right-hand side of eq 3.4) lines up along the slow eigenspaceof 50 savings for a case with =100.
of the right eigenvectors. The implementation of this procedure A two-dimensional manifold is defined by fixing two of the
is now described for a one-dimensional manifold. The most coordinates as “independent”, labeled hergaandy,. There
straightforward way to implement the condition is to choose aren — 2 conditions that define the Maa®ope approximation
one of the coordinates locally as the “independent” coordinate for a two-dimensional manifold, and these are analogous to egs
and all of the othen — 1 coordinates as “dependent”. The 3.10 and 3.11 for one-dimensional manifolds. The conditions

Maas-Pope condition is then written are
Ra_Fe i1 kem (3.9) Qi — Qi+ Q=0 (3.13a)
le I:m .
with
whereyn, is chosen as the independent variable and the rest of
the variables are the dependent variables. _ Qmp= RuRy2 = RyuRpp (3.13b)
To solve the set ofi — 1 conditions described in eq 3.9,
they are rewritten as the following set of— 1 functions Qun=RyR» — RoR 1 (3.13¢c)
=R F(X) —RF.,(X) k=1—n k=m (3.10) _
5= R0 = RaF 0= RaR2 ~ RoR; (3.130)
The following set ofn — 1 conditions then define the Maas )
Pope approximation to the one-dimensional manifold whereRy, Rre, andRp; refer to the elements of the second right
eigenvector, which is the eigenvector whose eigenvalue is the
S=0 k=1—n k=m (3.12) next “least negative”Rq, Rm, and Ry are elements of the

previously discussed first right eigenvector. The search for the

Equation 3.11 is am(— 1)-dimensional system that is solved  (n — 2)-dependeny values is similar to what was described
by first fixing ym and then making a search for the rest of the for then — 1 conditions used to find a one-dimensional manifold
yk values. From experiendg,it is important to have a good  described above.
first guess to eq 3.11 at a given valueypfto find an accurate
approximation to the manifold. Good guesses are obtained bylV. Tests of Manifold Methods
starting near equilibrium and carefully moving away from it,
with convergence attained at a set of points along the mariifold.
However, even with careful first guesses, searches can be time-,
consuming. For example, in searches using the Newton

A. Exact Maas—Pope Results Compared to Exact Mani-
folds. The methods derived in the previous section are now
tested. This is done first for the system of section IV of ref 1

Raphson proceduf&which is what is used here), it is necessary

to find the derivatives of the right-hand side of eq 3.4 in terms % = _ il (4.138)
of the (h — 1)-dependent coordinates. The most straightforward at Y1 Loy '
way to do this is with finite-difference approximations to the

derivatives. However, this procedure requires the diagonalization 3)/2 azy

of n — 1 n x n matrices and is very time-consuming. —yy, + ay,> + D,— (4.1b)

E3 e
The boundary conditions are the same as those in ref 1 (see

eq 2.6 above). The calculations in ref 1 focused on the aase

=y — 2, because the pure kinetics part of the probl®n£

D, = 0) has a simple one-dimensional manifolgh = y;2.

A more efficient search is now developed. Equation 3.11 is
solved by a NewtorrRaphson method, and this requires a
Jacobian matrix foSin eq 3.11, denotedS to distinguish it
from other Jacobian matrices in this paper. Kpelement of
this Jacobian matrix is

< 0 Earlier work on the MaasPope algorithrii-3*has made it clear
3= By = that there are two components to the error, the curvature and
] the attractiveness, studied in section Il for the association
oFy Ty p IR LR, Om + F il (3.12) reaction. The attractiveness of manifolds was one of the main

é)yJ k 8y R“l m dy, focuses of ref 1, and it does not dependahHowever the

curvature does depend anand to make a complete test of the
which is derived by chain-rule differentiation of eq 3.10. The Maas-Pope algorithm it is necessary to investigate a range of
first and third terms on the right-hand side of eq 3.12 are already values ofa other thany — 2.
known from the original Jacobian matrix of tikevalues and Appendix A derives the MaasPope approximation to the
the eigenvectors of that Jacobian. The second and fourth termamanifolds studied previously in ref 1. As ref 1 discussed, there
lead to increased computational cost. If finite differences are are two types of one-dimensional manifolds, depending on the
used to calculate th&® derivatives, § — 1) n x n matrix parameters of the system, and these were labeled case 1 and
diagonalizations must be performed. To reduce this effort, an case 2 (eq 4.6 in ref 1). These cases give rise to four types of
“analytical” method is used to solve for the eigenvector two-dimensional manifoldslabeled1 1,1 2,2 1,and 2_2. One-
derivatives®® This method uses both left and right eigenvectors dimensional manifolds of type 1 and two-dimensional manifolds
but only needs a single right eigenvector and its correspondingof type 1_1 and 1_2 are studied in this section.
left eigenvector to define the derivative of that particular right ~ The Maas-Pope approximation for one-dimensional mani-
eigenvector. So when eq 3.11 is solved, only the first right and folds of type 1 is written in the standard form of ref 1
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.7TX aéz rOO
sin{—~ E= "5 (4.6b)
Yio = —nxﬁylﬂ (4,2a) A [l = O ][1 —20,]
sm( 2 ) where
W _ 2+ 1
,L,ZO (X¢) ( yzlﬁ + MP(X¢) ~ (42b) /lk - [1 + JT (k+ 2) Dl] (473)
sm—) Sin—- )
2 2 ISR —[ v+ nz(k + %) D2] (4.7b)
where xg, X;, and x4 refer to specific values of the spatial
coordinatex.! The spatial domain is fixed to be the unit interval, g(()D
so thex values lie between 0 and 1. The following definitions O = s (4.7¢)
are used for the species coordinates in eqs 4.2a and 4.2b Am
Yig = Yi(Xg) — yiq(X/;) (4.3a) andrgy is an integral defined in eq A.3a. The relative error is
T,— T 2(,)
10 =Y1(%,) — ¥11X,) (4.3b) Ef)=—" T o= a-0) (4.8)
Yap = Yo%) = Y2 (%) (4.3¢) Equations 4.64.8 indicate that the absolute error is first-order

in the curvature (the paramete) and second-order in the
The designation “eq” refers to equilibrium distributions of  ejgenvalue ratio defined in eq 4.7c. The relative error of eq 4.8
the species. Equations 4.2a and 4.2b indicate that the form Ofdoes not depend on curvature at all and is second-ordér in
the type 1 manifolds in the Maa$ope approximation is the  for small values of). The errors indicated in these equations
same as the exact manifold. The differences are in the functionsare somewhat different than those calculated for systems of
720 andzzo, Which are labeled here with the superscript “MP”,  ordinary differential equation¥;3*because they do not depend
indicating the MaasPope approximation. directly on the attractiveness of the one-dimensional manifolds.
As expected; the Maas-Pope algorithm gives the exact The attractiveness depends on the raffdi{" rather thany,
answer for the function in front of the linear term in eq 4.7c. It is also different, because the relative error does
VP not depend on the curvature at all.
T30 = T30 (4.4) The two-dimensional manifolds of type 1_1 were defined in
ref 1. They depend on the functiomsy, 721, T22, T30, and 3y,
The Maas-Pope estimate for the function in front of the which are written as expansions. The functiepsandzzg have
quadratic termgq, differs from the exact version. The function already been defined for one-dimensional manifolds, and the
To0 IS Written as a sum over basis states error in the Maas Pope estimate is the same. The MaRspe
estimate for therz; term, like thers, is exact. The other two

. 1 functions have the following relative error for each term in the
Too(X) = Z T, sm[(m + E)nx (4.5a) expansion
m
02 —¢€,—0
and the MaasPope and exact versions can be compared E&? — Em ol €m o (4.9a)
(1— e —0,)
™V =
2(e,)?
2
2 D E)=—"— 4.9b
(m + %) 7D, + 7 l]rg‘o 2 (1-¢,) (4.96)
12 , 12 , 7D with 0 defined in eq 4.7c and
j/+(m+§) aD,||(y — 1)+(m+§)n DZ—T

(1)

(4.5b) _M
€m="5 (4.10)

m ;Lm

T,= ali 45
m- 2 (4.5¢) Once again errors depend on the ratio of eigenvalues and do
12 , D,
y—2)+ (m+ E) 7D, — 5 not depend on curvature.

The absolute and relative errors in the Ma&ope ap-
proximation for one-dimensional manifolds of type 1 depend
on dn, defined in eq 4.7c. The largest valuedfis atm = 0,
so it is expected that cases whexgis smallest have the best
agreement between the exact manifold and the M&ape
estimate. In ref 1, the attractiveness of the one-dimensional
manifolds for the system of this section was characterized by
—2a[igl)]2rg‘o the parametew;. For manifolds of type 1, &/ is smaller than
(4.6a) do for type 1_1 manifolds and equal to it for type 1_2 manifolds
iﬁ)[lg) - lgl)][/l(n? - 2181)] (see ref 1), and therefore the inverse of the attractiveness is an

where the “MP” once again refers to the Madope ap-
proximation and eq 4.5c shows the exact result.
The absolute error for the Maa®ope approximation is

T, — TN = —E,,=
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Figure 5. Accuracy of the MaasPope estimate of the one-dimensional manifolds. The top row shows a set of plots for three different values of
&1 chosen from Figure 10 of ref 1. The tripleSi,(&2, &) (eq 4.11) are from left to right in the top row: (0.30.02, 0.97), (1,-0.85, 0.95), (10.0,
—8.6, 0.515). The parametea™is set to (¢ — 2). The bottom row displays the calculation from the top left system at three other projections.

upper bound tody. So it is expected that the MaaPope 6 '
approximation should be reasonably accurate in those regions —

of parameter space where the manifolds are most attractive (large
o). Figure 5 demonstrates that this is true. The three systems 4t
were chosen from Figure 10 of ref 1, and all have= 8.0, a

fairly high value. These systems have rather small valuég of >
and so are expected to have good agreement between the exact
manifolds and their MaasPope estimates. The values &f

are from left to right in the top panels: 0.1, 0.06, and 0.08.

The systems are characterized by the following three system

N
T

0
parameters 0 1 5 3
D, +D, 1
1T (4.114a) Figure 6. A less attractive one-dimensional manifold than those of
Y Figure 5 shown for{, &2, C3) = (0.1, 0.037, 0.84) and = 1. In this
case the MaasPope estimate (dashed lines) of the manifold (solid
_ D,— D, < < line) is somewhat inaccurate. This two-dimensional projection was
t= y+1 —6=6=6 (4.11b) generated agi(x = 0.8)f(x = 0.2).

_y—1 Figure 7 shows a case where the one-dimensional manifold

&= y+1 —1=g=1 (4.11c) is not attractive at all, but the two-dimensional manifold is. The

top panel shows w/y, projection of trajectories, and it is clear

The top row of Figure 5 shows results for three different that they do not approach a one-dimensional manifold to any
systems at a specific value of the projectign(x = 0.75) versus significant extent, with the value af; for the one-dimensional
y1 (x = 0.25). The bottom row of Figure 5 repeats the manifold being 1.07. However, the value af for the two-
calculations of the top left panel at three different projections. dimensional manifold is 8.24, indicating it is attractive. The
The solid lines in Figure 5 show the exact one-dimensional bottom panel of Figure 7 demonstrates this attraction, by
manifolds, and the dots the MaaBope estimate of the showing a number of trajectories plotted with solid lines and a
manifold. These panels indicate that the MaBRspe algorithm two-dimensional manifold plotted as a relatively flat surface
is accurate for highly attractive manifolds. with a solid grid. The exact manifold is compared in the bottom

The Maas-Pope estimate of a manifold is generally less panel with the MaasPope estimate of the manifold, which
accurate for manifolds whose attractiveness is not high, and thisclearly is very inaccurate. The inaccuracy can be anticipated
is demonstrated for the one-dimensional manifold in Figure 6 because the value ef is 8.24, the same value as. This leads
for a system with, = 4.0 anddp = 0.25. The solid line shows ~ to large errors as calculated with egs 4.9a and 4.9b. These results
the exact manifold, the dashed line the MaB®pe estimate  are typical of the two-dimensional manifolds labeled as type
of the manifold, and the dotted lines four different initial 1_2 in ref 1.
distributions. There are larger dots on one of the dotted The results in this section indicate that some care is necessary
trajectories to indicate the relative slowness on the manifold. for calculating one- and two-dimensional manifolds with the
This trajectory and the one emanating from (3.0, 3.5) on the Maas-Pope algorithm. Unlike the situation with manifolds for
right of the plot clearly are attracted to the exact manifold and the pure chemical-kinetics situation, the error in the Maas
miss the MaasPope estimate, which is still a fairly accurate Pope estimate is not strictly due to the relative attractiveness
representation of the manifold. of the manifolds, nor does it depend on the curvature. Numerical
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v il Figure 8. The Maas-Pope estimate vs exact manifold in the top and
Figure 7. A situation where a one-dimensional manifold is not bottom panel for one-dimensional (top) and two-dimensional manifolds
attractive shown in the top panel. However there is an attractive two- (bottom) for the nonlinear system with an exact manifold. The solid
dimensional manifold as shown in the bottom panel. Individual lines show the exact, and the dots show the MdR@pe estimates.
trajectories are plotted as solid lines, and the exact two-dimensional The middle panel compares the Mad®pe manifold with trajectories
manifold in the bottom panel is drawn with dotted lines and is very for the reactior-diffusion equation for the association reaction (eq 2.5).
attractive (. = 8.2). The MaasPope estimate of the surface drawn The top panel is g (x = 0.25)k.(x = 0.75) projection, and the middle
with dashed curves is extremely inaccurate. This inaccuracy can bepanel is ayi(x = 0.59)4»(x = 0.19) projection. The bottom panel was
anticipated from eq 4.94(, &2, &3) = (10,—0.2, 0.33) anch = 2.0 for generated with g:,(x = 0.25)k1(x = 0.75)k(x = 0.39) projection.
this case. The top panel was generated wigi(a= 0.25),(x = 0.75)
projection. The three-dimensional projection in the bottom panel was (dotted lines). The bottom panel shows a comparison between
generated agi(x = 0.25)k1(x = 0.60)k2(x = 0.37). a two-dimensional manifold generated with the analytical

Maas-Pope estimate and the manifold generated numerically.

results presented in the rest of the paper show that aMaas This panel shows the manifold plotted as a set of contours, with
Pope estimate is accurate under many circumstances, but thehe analytical contours plotted with solid lines and the numeri-
results in this subsection indicate that some care is necessaryally generated contours plotted as series of dots. It is clear

when using the algorithm. from Figure 8 that the numerical algorithm developed in section
B. Manifolds Generated from Numerical Algorithms. The [l generates accurate representations of the M&ape

error analysis in the previous subsection, along with Figures estimates of the manifolds.

5—7, demonstrated that the MaaBope approximation could Numerically generated Maa$?ope estimates for one-

be accurate but also showed cases where it breaks down. Thiglimensional manifolds are compared to ones estimated with the
analysis suggested that the breakdown occurs when the spectr@redictor-corrector algorithm in Figure 9. The top panel of
of different rate processes intertwine, making terms such as theFigure 9 compares the predictecorrector estimate of the
ones in eq 4.10 large and thus the error terms in egs 4.9a andnanifold (dots) with the MaasPope numerical manifold, which
4.9b large, even though the attractivenessjs also large. The  the top panel of Figure 8 demonstrated was accurate. The top
examples in the rest of the paper avoid this situation. In this panel of Figure 9 thus shows that for a case where the Maas
subsection, the Maag$ope algorithm is compared to the more Pope estimate is accurate the predietoorrector offers no
accurate, predictercorrector method for one-dimensional mani- advantage. However, the middle panel repeats the system of
folds, under conditions where it is expected to be accurate, asFigure 6. Here the exact manifold is plotted as a solid line, the
a way of testing the numerical method for generating the predictorcorrector as a series of dots, and the MaRspe
manifolds described in section Ill. For two-dimensional mani- estimate calculated either numerically or from eq 4.5 as a dashed
folds, there is no method comparable for high-dimensional line (they agree). The middle panel of Figure 9 demonstrates
systems. Some modifications to the implementation of Fraser’s that when the MaasPope algorithm is inaccurate, the predic-
algorithn® from ref 14 would be necessary to make that method tor—corrector can be accurate. The bottom panel of Figure 9
reasonably efficient for these systems. compares the MaasPope estimate for the manifold (dots) and
The top panel of Figure 8 compares manifolds generated the predictor-corrector (solid line) for the case of the middle
numerically with the analytical Maad?ope manifolds from the  panel of Figure 8. Here again, the predieteorrector and
middle top panel of Figure 5. The dots in the top panel show Maas-Pope estimates agree.
the numerically generated manifold, and the solid line the Reference 4 discussed a generic relaxation scenario, as did
analytical Maas Pope approximation. The middle panel of Appendix A of ref 1, but the results of ref 1 and the present
Figure 8 compares the MaaBPope estimate of the manifold paper show that there is a limit to the attractiveness of manifolds
(solid line) with the trajectories of the top panel of Figure 3 from this scenario. Itis also the case that the relaxation pathways
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1= T T strongly attracted to the one-dimensional manifold than the two-
08 | . dimensional manifold.
06 | | This subsection and the previous one demonstrate that the
EN oal - | numerical procedure to generate a MaBspe estimate of the
’ manifold is essentially an exact realization of the analytical
02 r " i version of the same estimate. Although the Ma@epe estimate
0 - : of a manifold is generally accurate, the predietoorrector
0 05 ! 1.5 method is more accurate under conditions where a manifold is
6 T ' not very attractive. No attempt has been made in this paper to

generate two-dimensional manifolds in a way that is more
accurate than the Maa®ope algorithm. Because of compu-
tational complexity, Fraser’s iterative metifodeeds to be
modified to make it useful for two-dimensional and higher
manifolds. Numerical versions of this algorithm as developed
in ref 14 are being considered but have not been developed as
yet.

V. Chain-Branching System

This is a system studied earlier by Hadjinicolaou and
Goussi& and is based on the chain-branching mechanism of
Troutman-Dickensoiy

k
0 025 05 075 1 initiation M1—1*R1+|V|2 (5.1a)
Yi

Figure 9. Plots comparing the exact manifold (solid line), predietor . K

corrector (dots), and Maa$ope estimates (dotted line in middle panel). propagation R+ M,;—RH+R, (5.1b)

The plots demonstrate that the predietoorrector algorithm makes ks

an accurate estimate of the manifold in the middle panel even when R,—R;+ M, (5.1¢)

the Maas-Pope estimate is inaccurate. From top to bottom the

projections in this figure areyi(x = 0.25)k2(x = 0.75),y1(x = 0.25)/ Kk,

yo(x = 0.75), andys(x = 0.59)#(x = 0.19). termination R+ R,— M, (5.1d)
n The reaction-diffusion equations describing the active species

of the system are

0
1
> R, *R,
3 E = klMl - k2R1M1 + k3R2 - k4R1R2 +D ?
4 (5.2)
5
IR, PR,
° E = kZRlMl - k3R2 - k4R1R2 +D a_x2 (5.2b)
yi - M, M,
0705 —==—KkM; = kRM, + D —; (5.2¢)
Figure 10. Hierarchy of attractive manifolds for the association reaction ot X
case where the two-dimensional manifold is somewhat attraative ( . . . .
= 2.6) and the one-dimensional manifold is more attractive= 8.0). This system is a model for an imperfectly stirred reactor, as
The projection used in the figure yg(x = 0.6)41(x = 0.3)k(x = 0.2). noted in ref 22. The same variable names are used here for the

chemical species, but other designations have been changed.
may be very complicated and difficult to dis-entangle, so a true The rate constants are chosen to be the same as one of the
representation of a hierarchy is difficult to analyze away from numerical examples in ref 2R; = 1, ko = 10?, andky = 10°,
equilibrium, where linearization is less informative. However, with ks varied as it was in ref 22, where the ratiolefandks
there are situations where it is possible to observe a hierarchy,was singled out as a significant parameter. The boundary
and Figure 10 demonstrates this. In Figure 10, the two- conditions are the same as in ref 22, fixekat 0 Ry =R, =
dimensional manifold calculated with the Ma&2ope algorithm 0, andM; = 1.0), and no flux ak = 1.0 (eq 2.6). The diffusion
is plotted as a grid of dotted lines, and the one-dimensional constantsD, are chosen to be equal in all calculations reported
manifold calculated with the algorithm is plotted as a thick solid here, but unlike ref 22, they are not always 1.0. Changirig
line. The time propagation of an initial distribution is plotted equivalent to changing the length scale, by making the right
as a thinner solid line. Figure 10 demonstrates that the boundary different tham = 1.0.
distribution first lands on the two-dimensional manifold before It is not clear over what range of the full set of parameters
it reaches the one-dimensional manifold on the way to equi- that the system of eq 5.2 possesses strongly attractive one- and
librium (large solid dot). The near-equilibrium value @f is two-dimensional manifolds, and only a limited range of
8.0 for the one-dimensional manifold, aaglis 2.6 for the two- parameter space is studied that is consistent with ref 22. Figure
dimensional manifold. The difference in attractiveness is evident 11 shows a set of calculations of the attractiveness of one- and
away from equilibrium, because the thin line is much more two-dimensional manifolds in the vicinity of the equilibrium.
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10, ks = 5 x 1(P. Results for the propagation of five initial
distributions are presented in Figure 14, along with the projection
of the plane defined by the first two eigenvectorsJofThis
figure demonstrates that there is no attractive one-dimensional
manifold (@, = 1.0), but a fairly attractive two-dimensional
manifold is presentoz = 5.9 near equilibrium).

0 L ' VI. Ozone System
0.1 1 10 1001000 100000  le+07

This section investigates an ozone mechanism studied earlier
9 e T in refs 17 and 25. The same rate parameters are used as in these
earlier papers, but simulations are run under isothermal condi-
tions. There are three species: Q, @d Q. As in the earlier
references, it is assumed that diffusivity is spatially constant.
In the present study several different sets of equal diffusion
constants are investigated, with the spatial domain set to 1.0.
0 L N Some results are presented for unequal diffusion constants, as
0.1 1 10 1001000 100000  1e+07 was done in Figure 1 of the first papeiThe system in that
D=10 figure had different fixed boundary conditions»at= 0, that
J e m— T are set to the following here: [Ok(E= 0) = 0.0, [O;] (x = 0)
= 2 x 107° mol/cr?, [O3](x = 0) = 1 x 107> mol/crr?.

The reactior-diffusion system under these conditions is

(6.1a)

901 _ #10]

o = Fot D>
0.1 1 10 100 1000 100000  1e+07 >
\ o[0]) _ #0,]

o 2
Figure 11. Attractiveness of one-dimensional (solid line) and two- ot 2 b
dimensional manifolds (dotted lines) as defined in egs 2.12 and 2.13
shown for three values d® and a range of values &t. 9[04] 82[03]

(6.1b)

Results for three different diffusion constants are presented over ot O T3 52 (6.1c)

a large range of the rate constat, The solid lines are values

for the one-dimensional manifolds, and the dotted lines are for The F values are described by the same mass-action kinetics

two-dimensional manifolds. The attractivenessis defined in used throughout this paper and are presented more completely

the usual manner (egs 2.12 and 2.13). Once again, all eigen-in refs 17 and 25.

values have negative real parts, akdis the eigenvalue that The attractiveness of one- and two-dimensional manifolds

has the lowest magnitude. near equilibrium is presented in Figure 15 as a function of
Figure 11 demonstrates that while much of parameter spacetemperature at several different valuesDofand for one case

has either attractive one- or two-dimensional manifolds, there where theD values are different (bottom). Over most of the

are parameter ranges where the attraction is low for sall  temperature range there are attractive one- and two-dimensional

which is consistent with ref 1. Several systems with attractive manifolds. This case is like the reversible association reaction

one-dimensional manifolds are studied in Figure 12, which of section II, because the chemical kinetics possesses a constant

demonstrates that the attractiveness exhibited near equilibriumof motion due to conservation of the elements

in Figure 11 extends away from equilibrium. These plots show

a one-dimensional manifold as a solid line and a set of results [O] +2[0,] + 3[04 =¢C (6.2)

for different initial distributions as dashed lines, which are

attracted to the one-dimensional manifolds. The headings list Results for a select set of temperatures &hdalues are

the values oD and ks. The manifolds were calculated from presented in Figure 16. Figure 16a shows resultsTfer 880

the Maas-Pope algorithm of section Ill, and the results indicate K andD = 100, Figure 16b has results fér= 1200 andD =

that it is very accurate in this case. As noted above, the 100, and Figure 16c¢ presents resultsdor1000 andl = 1100

relaxation can be quite complicated for the systems studied here K. These plots are two-dimensional projections, which are

because they are infinite-dimensional. The trajectories showndescribed in the figure caption. The attractiveness of the

in Figure 12 were generally chosen to be in their last stages of manifolds can be read off Figure 15 and are from top to

relaxation to the manifold, and this complexity is not always bottom: (a)a; = 9.0, (b)oy = 9.0, and (c); = 5.0. Results

evident in the panels of Figure 12 and other figures in this paper. for four different distributions are shown in each panel of Figure
The accuracy of the Maa$?ope approximation is confirmed 16 as dashed lines, and an estimate of the one-dimensional

in Figure 13, which compares the Ma&Rope estimates to the  manifolds using the MaasPope algorithm is plotted as thicker

more accurate predictercorrector results. These panels show solid lines. Figure 16 demonstrates that trajectories are attracted

the predictofr-corrector results as solid lines and the Maas  strongly to the manifold and that the MaaBope estimate of

Pope results with a set of dots. The two methods generatethe manifold is accurate.

manifolds that lie on top of each other. As indicated in Figure 15, there are temperature ranges where
Figure 11 demonstrated that two-dimensional manifolds are two-dimensional manifolds are more attractive than one-
more attractive than one-dimensional manifold®at 10 for dimensional manifolds near equilibrium. Figure 17 shows results

high ks. Figure 14 shows results for one of these cafess for one of these cases. The temperature is 600 Kkard1000.
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Figure 12. Trajectories (dashed lines) are presented for five sets of systems as they approach a one-dimensional manifold. The systems are from
Figure 11, and the manifolds were estimated with the Md&spe algorithm. The projections are listed in the axes labels, and the headings show

the values oD andks, with all other parameters described in the text. The top row si@s= 0.54)M;(x = 0.44) projections, and the bottom

row showsM;(x = 0.44)R;(x = 0.08) projections.
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Figure 13. Results for the same set of manifolds as Figure 12 shown here, comparing the Rigesestimate (dots) with the predictaorrector
(solid lines) estimate. Each of the panels has the same projections as those in Figure 12.

The attractiveness of the two-dimensional manifold,is= 8.98. demonstrate that while it is possible to find situations (for

In this figure results are shown for six distributions as solid example, Figure 6) where the MaaBope algorithm is inac-

lines, and an estimate of the two-dimensional manifold calcu- curate, it is an accurate estimate for most situations where the

lated with the MaasPope algorithm is shown as a dotted-line manifold is very attractive.

grid. Because the attractiveness of the one-dimensional manifold

is so weak ¢u = 1.001) there is no apparent attraction to it. \/||. conclusion

But it is clear from Figure 17 that the two-dimensional manifold

is attractive away from equilibrium. This paper has numerically investigated the nature of one-
The Maas-Pope algorithm is a convenient method to generate and two-dimensional manifolds of several reactiafiffusion

manifolds, and we compare it to the more accurate but more Systems as they approach equilibrium. This extends the analysis

time-consuming predictercorrector method. In Figure 18, the  Of the first paper to more realistic systems and systems that

three manifolds from Figure 16 are once again plotted, this time are amenable to only numerical analysis.

as a series of dots. The predictaorrector values of the To extend the analysis, it was necessary to adapt two methods

manifolds are plotted as solid lines in Figure 18. It is clear that for finding low-dimensional manifolds to the reactiediffusion

there is good agreement between the predietorrector cases studied here. The predietoorrector method of ref 14

estimate and the Maa$ope estimate, although there is some required little change, but the MaaBope algorithm of refs

small but noticeable disagreement at the smallest values of the9—11 required modifications. Because the reactidiffusion

O, concentration in the top two panels. The results in this figure systems have infinite spectra, necessarily truncated numerically,
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Figure 14. Plot showing a case where a two-dimensional manifold is
attractive, but there is no attractive one-dimensional manifold. The
parameters ar® = 10 andks = 5 x 1CP. The values ofy; = 1.0 and

oz = 5.9 (egs 2.12 and 2.13). The projection shown in this pl& (s

= 0.54)M;y(x = 0.44)R,(x = 0.90).
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Figure 15. Attractiveness for the ozone example near equilibrium is
shown for one-dimensional (solid lines) and two-dimensional (dotted
lines) manifolds plotted vs temperature for several different values of
D. The top three panels have equalvalues, and the bottom panel
shows unequaD values.
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Figure 16. Plots showing how trajectories are attracted to one-
dimensional manifolds for the ozone system. The dotted lines show
trajectories, and the solid lines show manifolds estimated with the
Maas-Pope algorithm. Th® values andr values vary for each plot,
but theD values are equal for each case. The valueB ehdT are:

(2) D =100,T= 880K, (b)D = 100,T = 1200 K, and (cD = 1000,

T = 1100 K. Concentrations are in mol/énThe projections for the
top two panels argi(x = 0.46)/ys(x = 0.46), and for the bottom panel
yi(x = 0.46)42(x = 0.68).

(O]
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Figure 17. At D = 10000 andT = 600 K the one-dimensional
manifold is not particularly attractive (Figure 16),(= 1.0001), and
the two-dimensional manifold isx¢ = 8.995), as demonstrated in the
figure. The projections shown in this figure aygx = 0.46)k1(x =
0.68)4(x = 0.46).

dimensional manifold represents a reduction from 300 ordinary
differential equations to one.
Although the reductions outlined here are significant, they

it became important to have an algorithm that only used the gceyr at the longest times. This means that there are many
relevgnt eigenveptors, the so-called slow space..Once this Wa$hysical and chemical processes where they are not useful,
done it was straightforward to develop an algorithm that was pecause these processes occur at shorter times. The reduction
faster, because it used eigenvector derivatives that required mUCf!echniques studied here could be used for more general physical
less computation. The modified algorithm ran faster by a factor processes if they were defined locally in space. Attention to
of approximately 50 for the problems studied here. this problem is underway.

The reduction achieved with the low-dimensional manifolds
studied here is orders of magnitude greater than the reduction Acknowledgment. This work was supported by the Office
from methods that reduce the number of species, because bottof Basic Energy Sciences, Division of Chemical Sciences,
the number of species and the number of grid points are reducedGeosciences, and Biosciences, U. S. Department of Energy,
For example, in many of the problems studied here the one-under Contract No. W-31-109-ENG-38.
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Figure 18. Plots comparing the manifolds from Figure 17 (dots here)
generated by the Maa$?ope estimate with predictecorrector results

(solid lines). The projections are the same for each panel as they are in

Figure 16.

Appendix A: Exact Realization of Maas—Pope
Approximation for a Nonlinear Reaction—Diffusion
System

For the system of eq 4.1 it is possible to analytically generate
the Maas-Pope approximation to the exact manifolds presented

in ref 1. The distributions foy; andy, are expanded in terms
of the eigenvectors of the diffusion equation

v, (%) = y3ix) + ; byt sin[(m + g)nx] (A.1a)
and
Yo(x.t) = y53x) + ; B,(t) sin[(m + %)nx (A.1b)

These expansions are inserted into eq 4.1 giving

do,,,

dt blm

= —[1 + (m + 1)2JTZD1 (A.2a)

2

db

2m

1\2
A T
J

at
a Z > Tiebubi, (A2b)
n

m=2/ sir{(m + %)nx] sin[(k + %)nx] sin[(n + %)nx] dx

(A.3a)

Davis
s"=2 f yed sir{(m + %)nx] sin[(j + %nx)] dx -

The Jacobian matrix of the system in eq A.2 is written in the
following form The blocks have the following matrix elements

Jll J12
= ( P2 (A4)
2
=0 except Ji= —[1 + (k + %) nle] (A.5a)
3 =72as, + 2a > rk b, (A.5b)
n
J2=0 (A.5¢)
22 _ 22 _ 12 »
Jm=0 except J4=—|y +(k+ 5 D, (A.5d)
There are two sets of eigenvalues
1 12 2
A= —[1+ (k+§) 7 Dl] (A.6a)
2 12 ,
2= —[)/ + (k + é) p 02] (A.6b)

For one-dimensional manifolds of type 1 (ref 1) the lowest
eigenvalue islgh. The right eigenvectors are written as

1 pl2
R= RY R (A.7)
R R?
It is straightforward to find the eigenvectors. For the algorithm
outlined in section 111, the following eigenvector is needed for

one-dimensional manifolds of type 1
R =0 except Ro=1
2ag, + 2a > rd b,
n

(A.83a)

R =

(A.8b)

( 1)22 7D,
-1+ |m+—-]aD,—
(v ) 5 2 4

The idea behind the Maa®ope algorithrh is that a one-
dimensional attractive manifold is such that the velocity vector
of the system (the right-hand side of eq A.2) lines up along
this eigenvector. The calculation of the conditions that need to
be satisfied are first described for tiR&! components of the
eigenvector

R —[1 + (m + 1)zyzlel b,
_ 2 m

Ro

> (A.9)
T U,
— [l + 4

o

blO

Equation A.9 is merely a statement that the velocity vector
component (right-hand ratio) lines up along the proper eigen-
vector component (left-hand ratio). The valuesRét can be
substituted from eq A.8a
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2
_[1 i (m+ %) Db, from eq A.2
0= > =b,=0 m=0 "
- [1 + 728, —(RERH - RiéRé%)[l +(m+3) nZDl] by +
(A.10) ( nle) ( 9n201)
1+—=)f, b+ foll + ——|b; ;=0
This indicates that all of the;, values are zero excepio. 4 | im10 © T0m 4 |71
The results for théd;, values can be used to solve for the g=1,2 (A.15)
bom values employing the correct componentsR8t and the _
corresponding velocity components Equation A.15 can be used to solve far,
2 2
Ry Jr+(mt g Dot et agpl,  —(RERE - RIR[L+ (m+ 3 D)o, = 0=
RE 2D, b,,=0 m=0,1 (A.16)
-1+ 2 by,
(A.lla) The solution forbym yields the following solution foibzm
2
7D, db 7°D
[l + 4 ]bloRﬁ) + 2agh,, + arggh?, (RyeRIT — Ri(l)l:\%%)—dim + (1 + 4 ! fimPro T
me =
12 , 97D
[y~|—(m+—)7tD2] ( ﬂ_l) _
2 (A11b) foml 1+ 7 b,;=0 (A.17a)

The velocity components defined on the right-hand side of eq 7[2D1 9n2D1

A.2b are simplified because all of tig values are zero except db,,. 1+ e f1mbro + forl 1+ 1 b,

bio. The R?* components in eq A.11b are defined in eq A.8b, i IR T (A.17b)
with the summation truncated to a single term, because only t (RooRy1 — RioRm)

b1o is nonzero. Théy,, values are now

Through the use of eq A.2a and the solutionbigy in eq A.16,

By = 010 + Bubio (A.12) the by, velocities can also be written as
with db,, 12
Sm_ —[)/ + (m + 5) 22D,y + 28036 + by, S +
2a
oy = al 5 (A.13a) a(rgoio + 2y, + riibiy) (A.18)
1\2 2 7Ty
-1+ (m + §) D~ ] Equations A.17b and A.18 can be used to solvebfgy which
is written as
and
B, = Pom = NomP1o T M1mPr1 + Tlmbio + TombiPiy + ISmbil
m ) (A.19)
1\2 2, T Dl m . . .
y+21)+ (m + E) aD,+ 7 oo using these relationships
2
2 aD 2 =R4
[(y ~1)+ (m + %) 7D, — = 1] [)/ + (m + %) 2D, fom = R (A-203)
(A.13b) fin= an% (A.20b)
The Maas-Pope approximation for two-dimensional mani-
folds of type 1_1 is defined in the following manner. The 2ag)' + 2a(rgpb, o+ robyg)
velocity vector is lined up in the plane of the first two right R,ZT%,= oo otd 2 (A.20c)
i 2 4
eigenvectors (y — 1)+ (m—|— %) 2D, — Z 1
¢ dby, db,, ¢ db,, 0 g1 2
L L 2as" + 2a(rMb,, + rMb
(A.14a) REL = S 2a(rebyo + i ;DZD (A.20d)
1\2 2 T Uy
Ty = RERIL — RURE (A.14b) (= D+ (m+ 37D, - =
fom = RooRma — RroRo1 (A.14c)  The coefficients in eq A.19 have the following form
fim = RiaRp — RioRm (A.14d) 228
; Nom = — (A21a)
Note that it is assumed that the “progress variables”mge (y— 1)+ (m 4 E)ZﬂzD T D,
andb;;. Equation A.14a is rewritten substituting the velocities 7 2 2 4
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2as"
M= —  (A21b)
1)+ [m+ Y%, - 208
(= D+ m+ 37D, ~ =5~
Tim =
2
2 a’D
[(y +1)+ (m + %) 7°D,| + Tlarg“o
2
2 xD 2
’(y — 1+ (m+%) 7D, ~ 1][y + (m—l—%) 2D,
(A.21c)
Tom =

2a{ [}/ + (m + %)2,1202] 2_ (1 + n:Dl) (1 + gnle)} m
[(y 1+ (m+ %)anDz - 9”2[)1] [(y 1+ (m + %)2,72D2 - _12701] [y + (m+ %)anoz]

(A.21d)

T3m=
12 , 9712D1
(y+l)+(m+§)nD2~l- 7

m
ary,

97°D,
4

’(y — 1+ (m + %)ZnZDZ -

1\2
y+(m+—)nzD2

2
(A.21e)
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