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Calculations are undertaken to study the approach to equilibrium for systems of reaction-diffusion equations
on bounded domains. It is demonstrated that a number of systems approach equilibrium along attractive
low-dimensional manifolds over significant ranges of parameter space. Numerical methods for generating
the manifolds are adapted from methods that were developed for systems of ordinary differential equations.
The truncation of the infinite spectrum of the partial differential equations makes it necessary to devise a new
version of one of these methods, the well-known algorithm of Maas and Pope.

I. Introduction

A previous paper1 demonstrated how low-dimensional mani-
folds arise in systems of reaction-diffusion equations. Most of
the systems studied in ref 1 could be solved analytically as a
sum over basis states. The purpose of the first paper was to
explore fundamental aspects of these low-dimensional mani-
folds, so numerical complexity was downplayed. The present
paper extends the analysis to systems whose solutions can only
be obtained numerically and has two goals: (1) the demonstra-
tion that attractive low-dimensional manifolds are common over
large regions of parameter space and (2) the development of
methods for generating such manifolds.

The accurate modeling of reactive flows is computationally
intensive,2 and it is useful to have the means to gain compu-
tational savings. One way to do this is to develop methods for
reducing the effort needed to model complex chemical kinetics,
an important and time-consuming part of the modeling of
reactive flows.2 Chemical-kinetic systems often have a large
range of time scales with the result that these systems approach
equilibrium along low-dimensional surfaces (manifolds) in the
phase space of the species. Because these manifolds have much
lower dimension than the original system, they provide the
potential for computational savings. Many researchers have
studied these manifolds, with early reviews published elsewhere3

and discussed in the first paper.1 These manifolds are improve-
ments to steady-state approximations4 and are based on a better
representation of the true dynamical nature of the kinetics. The
work by Fraser and Roussel,4-7 Lam and Goussis,8 and Maas
and Pope9-11 are important examples of how dynamical
information can be used to define low-dimensional manifolds
in kinetics models. These works have motivated many others.12-20

Reference 14 analyzes some of these methods in detail.
The methods outlined above rely on the reduction of the

number of species that need to be followed to accurately model
complex kinetics. That work naturally led to studies investigating
the way transport processes important in the modeling of reactive
flows could affect the reduction, and there have been several
studies of this issue.10,17,21,22Reactive flows are solved in space

and time,2 and although it is important to understand the way
that chemical-kinetic manifolds change due to transport pro-
cesses, these manifolds are only one type of manifold that can
be used to reduce the computational effort. Other types of low-
dimensional manifolds provide greater computational savings,
and these were studied in the first paper.1 They go beyond the
manifolds discussed in those earlier references in that they
provide a reduction in both the number of species and the
number of spatial points that need to be followed. They are
qualitatively different than the ones discussed for systems of
complex kinetics, as well as the modified versions of the
manifolds studied in refs 10, 17, 21, and 22, and are related to
inertial manifolds that have been studied for nonlinear partial
differential equations.23,24

This paper continues the investigations of ref 1. It starts in
section II by studying numerically a reversible association
reaction with diffusion. This section investigates the conditions
that lead to attractive one- and two-dimensional manifolds near
equilibrium and then presents calculations demonstrating that
these manifolds appear to exist well away from equilibrium.
Section III then extends the analysis of section II, by adapting
two methods for the study of low-dimensional manifolds for
ordinary differential equations. The first is the algorithm of Maas
and Pope,9 and the second is the predictor-corrector method
of ref 14. For systems of reaction-diffusion equations, no
significant modification of the predictor-corrector method is
necessary, but the Maas-Pope algorithm does require modifica-
tions. In addition, because the systems studied here are large,
an effort is made to make the algorithm more efficient, and
this is also described in section III. The methods described in
section III are tested in section IV. The first test is for the
nonlinear reaction-diffusion system of the first paper1 that has
an exact solution. Section IV also discusses the accuracy of the
methods for the system of section II.

Sections V and VI extend the analysis to two systems studied
previously by others. Section V studies the chain-branching
system of ref 22 and section VI studies ozone combustion with
the model of refs 17 and 25. These sections demonstrate that
low-dimensional manifolds are common over a broad range of
parameter space for chemically realistic systems. Section VII
has a brief discussion and some conclusions.
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II. Numerical Example: Reversible Association Reaction
with Diffusion

A number of nonlinear systems have been studied numerically
to investigate the finite-dimensional, attractive manifolds of ref
1, and results for three of these are presented here, along with
a further investigation of the nonlinear system of section IV of
the first paper.1 The systems have the following form

where the brackets refer to a set of species variables, for
example, density, mass fraction, mole fraction, etc. The first
term on the right refers to the reaction system, and the second
term describes diffusion. All kinetics studied in this paper are
isothermal.

This paper studies four systems, and there is a qualitative
difference among them, characterized by the difference between
the systems of refs 17 and 22. The system of ref 17 and section
VI has a reaction component,F, which possesses a constant of
motion

where themi values are integers. This is a common feature of
reaction mechanisms,2 where there can be several constants. The
system of ref 22 and section V does not possess such a constant.
Under conditions where there is a constant, the components in
eq 2.1 can be summed

with

For systems where theD values are equal, eq 2.3a reduces
to a diffusion equation

When D is small, eq 2.3c describes the slowest motion. For
systems with small values of nearly equalDi, the low-
dimensional manifolds observed near equilibrium are analogous
to the manifolds of eq 2.3c. There is no similar analogy for the
manifolds of the other two systems studied here.

The model systems in this section and section IV1 were
studied in part because they correspond to the qualitative
difference for the systems in section V and VI. The system
studied in this section has a constant, and the system studied in
section IV does not.

A. A System, Its Equilibrium States, and Their Stability.
The reversible association reaction

has the following reaction-diffusion system

where k1 and k2 are the forward and reverse reaction rate
constants, respectively, andy1 andy2 describe the densities or
concentrations of A and B, respectively. In general, this system
cannot be solved analytically. In this paper, boundary conditions
are fixed in the same manner as in ref 1

The equilibrium state of the system in eq 2.2 is defined by

In general, eq 2.7 must also be solved numerically. Two
techniques are used to solve for the equilibrium states of the
systems studied here. They are a Newton-Raphson procedure26

and the “shooting” technique.27 The latter technique is less stable
and was only used in this section. The Newton-Raphson
procedure was used for the cases in sections V and VI.

For D1 ) D2 ) D in eq 2.5 the following is true

with

Near equilibrium the dynamics can be solved by lineariza-
tion.28 A displacement away from equilibrium in function space
is described

Because the displacementsδy1andδy2 are small andy1
eq and

y2
eq satisfy eqs 2.7a and 2.7b, the solution for the displacements

is found from
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Although eqs 2.10a and 2.10b are linear, the equilibrium
distributions of they values have a spatial dependence, and it
is necessary to solve the equations numerically. Numerical
solutions are accomplished with the discrete forms of eqs 2.10a
and 2.10b, as outlined in ref 1. A grid of 99 internal points
with a grid spacing of 0.01 was used for bothy1 andy2.

Reference 1 described the stability analysis of systems such
as the one in eq 2.5 starting from eq 2.10. The right-hand side
of eq 2.10 defines a Jacobian matrix whose eigenvalues and
eigenvectors define the dynamics locally. For such systems, the
eigenvalue spectrum is infinite but is truncated, based on the
number of grid points. Because of the truncation of the matrix
only the lowest eigenvalues of the matrix are converged to any
real degree.

The rest of the analysis of the equilibrium state and its stability
follows from ref 1. A global analysis of the attractiveness of
the linear manifolds near equilibrium is made in a similar
manner as ref 1. The following parameters are defined

Figure 1 describes the attractiveness near equilibrium using
the first two eigenvalues of the Jacobian matrix

Three sets of systems are studied in Figure 1 with different
values ofú1. Contours are plotted between 2.0 and 8.0 with an
interval of 1.0 for the bottom two panels and from 4.0 to 8.0 in
the top panel. Most contours are plotted with solid lines, but
the highest contours are drawn with a thicker solid line, and
the lowest contours are drawn with dotted lines. As evident in
Figure 1, there can be sharp corners in the contours because of
seams in the surface that result from the presence of two
different types of eigenvalues. Because there is no analytical
form for the eigenvalues, as there was for most of the cases
studied in ref 1, there has been no attempt here to generate these
seams.

The top panel of Figure 1 demonstrates that whenú1 is small
there is a wide range of parameter space nearD1 ) D2 where
the manifolds are very attractive, and Figures 1b and 1c
demonstrate that there is a more narrow range of parameters
where attractiveness is large. There is a straightforward explana-
tion for the regions of parameter space where attractiveness is
high. In the top panel of Figure 1, diffusion is slow compared
to reaction, and as long as the diffusion constants are not too
different, the slow time scale is nearly purely diffusive (see
above). In the bottom two panels diffusion competes with
reaction, and a separation of time scales occurs for systems
where the fast reacting species are those that also diffuse rapidly.
Therefore the regions of parameter space where the attraction
is highest are in the left bottom and right top of the middle and
bottom panels of Figure 1. Both of these situations were studied
in ref 1 for other systems, where it was possible to derive
analytical values for the attractiveness globally.

Figure 2 shows the attractiveness of two-dimensional mani-
folds, defined as1

Equation 2.13 states that the attractiveness of the two-
dimensional manifolds near equilibrium is estimated from the
ratio of the second and third largest eigenvalues (both are
negative). The top plot forú1 ) 0.1 is very flat, and the only
contour that appears is 2.0, which is plotted as a dotted line.
(The maximum is 2.8.) The middle plot forú1 ) 1 is less flat,
and there are five contour values shown with the minimum at
2.0 plotted as a dotted line and the maximum contour of 6.0 in
the bottom center plotted as a thicker solid line. The bottom
panel of Figure 2 forú1 ) 10 has a full range of contours from
2.0 to 8.0, as described above for the bottom two panels of
Figure 1.

The contours in Figures 1 and 2 demonstrate that the system
in eq 2.5 has attractive one-dimensional manifolds with at-
tractiveness greater than 8.0 near equilibrium for a large range
of parameter space forú1 ) 0.1 and a much more limited range
for ú1 ) 1 and ú1 ) 10. Two-dimensional manifolds near
equilibrium are not very attractive over the whole range of
parameter space forú1 ) 0.1, but there are regions of parameter
space where two-dimensional manifolds have high attractiveness
for ú1 ) 1 and ú1 ) 10. In general, regions where two-
dimensional manifolds are most attractive are those where the
one-dimensional manifolds are least attractive and vice versa.
This effect was previously observed in the first paper1 for several
systems.

B. Numerical Study of the Approach to Low-Dimensional
Manifolds. It requires a numerical method to solve the time

Figure 1. A series of contour plots ofR1 (eq 2.12) describing the
local attraction to one-dimensional manifolds for a range of parameters.
The parameters are defined in eq 2.11. The heading of each plot lists
the value ofú1, thex-axesú2/ú1, andy-axesú3. The maximum contours
in each plot are at 8.0 and are drawn as thick solid lines. The minimum
contours in each plot are drawn as dotted lines and have the value of
4.0 in the top panel and 2.0 in the bottom two. The thin solid lines in
the panels show the other contours that are at intervals of 1.0 between
the minimum and the maximum contours.

ú1 )
D1 + D2

k1 + k2
(2.11a)

ú2 )
D1 - D2

k1 + k2
-ú1 e ú2 e ú1 (2.11b)

ú3 )
k1 - k2

k1 + k2
-1 e ú3 e 1 (2.11c)

R1 )
λ1

λ0
(2.12)

R2 )
λ2

λ1
(2.13)

Reaction-Diffusion Equations: Numerical Analysis J. Phys. Chem. A, Vol. 110, No. 16, 20065259



development of the system, and a semidiscrete method is used.29

The second derivatives in eq 2.5 are approximated with second-
order finite differences, and the system of ordinary differential
equations is solved with a stiff integrator, LSODE.30

Results for one of the systems pictured in each panel of Figure
1 are presented in the panels of Figure 3. These plots describe
calculations on four initial distributions ofy1 andy2. The top
panel shows results for (ú1, ú2, ú3) ) (0.1, 0.036, 0.7), the middle
(1, -0.82,-0.92), and the bottom (10,-8.6,-0.56). Thex-axes
of the top two panels describe the value ofy1 at x ) 0.59 and
they-axes indicate the value ofy2 at x ) 0.18. The bottom plot
shows results fory1 at x ) 0.19 andy2 at x ) 0.91. The large
dots on all the panels show the value of the equilibrium
distributions at the selected coordinate pairs. The plots in Figure
3 show that the near-equilibrium attraction indicated in Figure
1 extends away from equilibrium, and the bottom two panels
indicate that the manifolds are nearly linear in those cases. The
plots in Figure 3 demonstrate that the time propagation of the
four initial distributions in each panel approach one-dimensional
manifolds.

The analysis of Figure 3 is extended in Figure 4 to a case
from Figure 2 for a two-dimensional manifold. Four distributions
are studied. The parameter values for this case are (ú1, ú2, ú3)
) (1, 0.04,-0.98). As indicated in the middle panel of Figure
1, this case has one-dimensional manifolds with very low
attractiveness, and the top panel of Figure 4 demonstrates this
with the propagation of four initial distributions. The projection
used in this case isy1(x ) 0.30)/y2 (x ) 0.47), and the large dot
is the projection of the equilibrium distribution. The plot
demonstrates that the distributions do not approach a one-
dimensional manifold with any real degree of attraction.

Although one-dimensional manifolds are not very attractive
for this set of parameters, two-dimensional manifolds are. The

value ofR2 indicated in the middle plot of Figure 2 is 6.1. The
bottom panel of Figure 4 shows a three-dimensional projection

Figure 2. A series of contour plots describing the value ofR2 (eq
2.13) that describes the local attractiveness of two-dimensional
manifolds. The values of the parameters are the same as in Figure 1,
and the contour intervals are the same, but not all contours are present,
because of the relative flatness of the top two panels. The dotted lines
in the top panel showR2 of 2.0, and the range of the contours in the
middle panel is from 2.0 to 6.0, with the thicker curve in the bottom
middle of the panel having that value.

Figure 3. Results for a set of distributions plotted here usingy1(xâ)/
y2(xσ) projections. The systems studied in the panels correspond to one
system from each of the panels of Figures 1 and 2, with the full list of
parameters noted in the text. In the top two panelsxâ ) 0.59 andxσ )
0.18. In the bottom panelxâ ) 0.19 andxσ ) 0.91.

Figure 4. Results from a set of four calculations plotted in these two
panels for (ú1, ú2, ú3) ) (1, 0.04,-0.98). The top panel shows a two-
dimensional projection fory1(xâ)/y2(xσ), and the bottom a three-
dimensional projection fory1(xâ)/y2(xσ)/y1(xφ). The values of the spatial
coordinates are:xâ ) 0.30,xσ ) 0.47, andxφ ) 0.60. The plane plotted
in the bottom panel is formed from the first two eigenvectors whose
eigenvalues areλ0 andλ1.
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of the same set of results from the top plot (y1 (x ) 0.3)/y2 (x
) 0.47)/y1 (x ) 0.6)). Also included in the bottom panel of
Figure 4 is the plane defined by the two eigenvectors of the
Jacobian whose eigenvalues defineR1 (eq 2.12) for the one-
dimensional manifolds. These eigenvectors are the ones whose
eigenvalues have the two least negative real parts. The bottom
plot indicates that, while the trajectories in the top panel do not
approach a one-dimensional manifold, they do approach a plane,
indicative of a two-dimensional manifold.

The results in this section and ref 1 demonstrate that there
are systems whose time development approaches low-dimen-
sional manifolds on the way to equilibrium. The rest of the paper
will extend these earlier numerical and analytical studies. Two
methods of approximating low-dimensional manifolds away
from equilibrium will be developed, and their accuracy will be
investigated. These methods are general enough that they can
be applied to more complex cases than those investigated here.

III. A New Version of the Maas-Pope Algorithm

The low-dimensional manifolds studied here are difficult to
estimate with many of the techniques discussed in the Introduc-
tion, because of the large dimensionality of the system of
ordinary differential equations used to approximate the reac-
tion-diffusion systems, and only two techniques are used. One
is the predictor-corrector method of ref 14, and the other is
the Maas-Pope algorithm of refs 9-11. There have been no
significant modifications of the predictor-corrector method, and
the description in ref 14 is sufficient. Significant modifications
have been made to the Maas-Pope algorithm, and they are now
described.

One of the most complete descriptions of the numerical issues
involved in applying the Maas-Pope algorithm is presented in
ref 11. As this reference makes clear, there are a number of
important problems that arise in trying to implement the
algorithm. Two of these problems become particularly acute
when studying the systems in this paper.

Consider the Jacobian matrixJ, for the semidiscrete form of
the reaction-diffusion system for the association reaction of
section II. It is written in a block form1

and has the following matrix elements

Because the Jacobian is a real general matrix, it possesses left
and right eigenvectors that are defined by the following matrix
equation31

where L and R refer to left and right eigenvectors and the
superscript “T” refers to the transpose of matrixL . The
eigenvalues ofJ are contained in the diagonal matrixΛ.

The first of the problems noted above arises because the
eigenvalues and eigenvectors ofJ are generated from a truncated
version ofJ, and the higher eigenvalues and their respective
eigenvectors are generally not converged, making them very
sensitive to small changes in the elements ofJ. This makes
many algorithms for implementing the Maas-Pope approxima-
tion unstable. The second problem is due to the large number
of ordinary differential equations defined by a semidiscrete
method. For only a few species and grids of a hundred points
per species, the system of ordinary differential equations
contains on the order of a few hundred equations and makes
the Newton-Raphson searches to satisfy the manifold condi-
tions11 long.

These two problems have led to the development of an
alternate algorithm that only uses the relevant eigenvector space,
the “slow space”.11 The new algorithm is now described for
one- and two-dimensional manifolds. Extension to higher-
dimensional manifolds is straightforward. All manifolds studied
in this paper are one-dimensional and two-dimensional, because
they are the most attractive for the systems studied.

The Maas-Pope approximation starts with the assumption
that a system rapidly relaxes to a lower-dimensional manifold
defined locally by a subspace spanned by the slow eigenvectors
of the Jacobian. These eigenvectors are the right eigenvectors
whose eigenvalues are those with negative real parts and the
lowest in magnitude. Anm-dimensional manifold in ann-
dimensional space (m < n) is defined locally bymeigenvectors
with this condition on the eigenvalues. In many versions of the
algorithm, the condition is implemented by making sure that
the space of “fast” eigenvectors lies perpendicular to the
manifold. The fast eigenvectors are the other eigenvectors that
are not “slow”, that is those whose eigenvalues have a larger
magnitude. BecauseJ is a real general matrix, both the left and
the right eigenvectors need to be used to satisfy this condition.9

For the systems studied here, such an algorithm is not stable,
because many of the fast eigenvalues are not converged
(problem 1), and a new algorithm is needed and is now
developed.

Consider a system of ordinary differential equations, which
in this paper is a spatially discrete approximation of a system
of partial differential equations. The time development of the
kth coordinate of thisn-dimensional system is

An element of the Jacobian matrix is defined as

The right and left eigenvectors ofJ satisfy eq 3.3 and are
orthogonal to each other in the following manner

whereI is the identity matrix. The elements ofR are written as

The elements of the right eigenvector whose eigenvalue is
negative and smallest in magnitude is labeled as “1”, and its
elements are written as
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The new version of the Maas-Pope algorithm is implemented
by finding the set ofy values in eq 3.4 whose “velocity” vector
(the right-hand side of eq 3.4) lines up along the slow eigenspace
of the right eigenvectors. The implementation of this procedure
is now described for a one-dimensional manifold. The most
straightforward way to implement the condition is to choose
one of the coordinates locally as the “independent” coordinate
and all of the othern - 1 coordinates as “dependent”. The
Maas-Pope condition is then written

whereym is chosen as the independent variable and the rest of
the variables are the dependent variables.

To solve the set ofn - 1 conditions described in eq 3.9,
they are rewritten as the following set ofn - 1 functions

The following set ofn - 1 conditions then define the Maas-
Pope approximation to the one-dimensional manifold

Equation 3.11 is an (n - 1)-dimensional system that is solved
by first fixing ym and then making a search for the rest of the
yk values. From experience,11 it is important to have a good
first guess to eq 3.11 at a given value ofym to find an accurate
approximation to the manifold. Good guesses are obtained by
starting near equilibrium and carefully moving away from it,
with convergence attained at a set of points along the manifold.14

However, even with careful first guesses, searches can be time-
consuming. For example, in searches using the Newton-
Raphson procedure32 (which is what is used here), it is necessary
to find the derivatives of the right-hand side of eq 3.4 in terms
of the (n - 1)-dependent coordinates. The most straightforward
way to do this is with finite-difference approximations to the
derivatives. However, this procedure requires the diagonalization
of n - 1 n × n matrices and is very time-consuming.

A more efficient search is now developed. Equation 3.11 is
solved by a Newton-Raphson method, and this requires a
Jacobian matrix forS in eq 3.11, denotedJS to distinguish it
from other Jacobian matrices in this paper. Thekj element of
this Jacobian matrix is

which is derived by chain-rule differentiation of eq 3.10. The
first and third terms on the right-hand side of eq 3.12 are already
known from the original Jacobian matrix of theF values and
the eigenvectors of that Jacobian. The second and fourth terms
lead to increased computational cost. If finite differences are
used to calculate theR derivatives, (n - 1) n × n matrix
diagonalizations must be performed. To reduce this effort, an
“analytical” method is used to solve for the eigenvector
derivatives.33 This method uses both left and right eigenvectors
but only needs a single right eigenvector and its corresponding
left eigenvector to define the derivative of that particular right
eigenvector. So when eq 3.11 is solved, only the first right and

left eigenvectors are needed in the search based on eq 3.12.
The method requires matrix-vector operations, and second
derivatives are needed. Both of these have some computational
cost, but this cost is low enough that there is typically a factor
of 50 savings for a case withn )100.

A two-dimensional manifold is defined by fixing two of the
coordinates as “independent”, labeled here asym andyp. There
aren - 2 conditions that define the Maas-Pope approximation
for a two-dimensional manifold, and these are analogous to eqs
3.10 and 3.11 for one-dimensional manifolds. The conditions
are

with

whereRk2, Rm2, andRp2 refer to the elements of the second right
eigenvector, which is the eigenvector whose eigenvalue is the
next “least negative”.Rk1, Rm1, and Rp1 are elements of the
previously discussed first right eigenvector. The search for the
(n - 2)-dependenty values is similar to what was described
for then - 1 conditions used to find a one-dimensional manifold
described above.

IV. Tests of Manifold Methods

A. Exact Maas-Pope Results Compared to Exact Mani-
folds. The methods derived in the previous section are now
tested. This is done first for the system of section IV of ref 1

The boundary conditions are the same as those in ref 1 (see
eq 2.6 above). The calculations in ref 1 focused on the casea
) γ - 2, because the pure kinetics part of the problem (D1 )
D2 ) 0) has a simple one-dimensional manifold:y2 ) y1

2.
Earlier work on the Maas-Pope algorithm14,34has made it clear
that there are two components to the error, the curvature and
the attractiveness, studied in section II for the association
reaction. The attractiveness of manifolds was one of the main
focuses of ref 1, and it does not depend ona.1 However the
curvature does depend ona, and to make a complete test of the
Maas-Pope algorithm it is necessary to investigate a range of
values ofa other thanγ - 2.

Appendix A derives the Maas-Pope approximation to the
manifolds studied previously in ref 1. As ref 1 discussed, there
are two types of one-dimensional manifolds, depending on the
parameters of the system, and these were labeled case 1 and
case 2 (eq 4.6 in ref 1). These cases give rise to four types of
two-dimensional manifolds labeled 1_1, 1_2, 2_1, and 2_2. One-
dimensional manifolds of type 1 and two-dimensional manifolds
of type 1_1 and 1_2 are studied in this section.

The Maas-Pope approximation for one-dimensional mani-
folds of type 1 is written in the standard form of ref 1
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where xâ, xσ, and xφ refer to specific values of the spatial
coordinatex.1 The spatial domain is fixed to be the unit interval,
so thex values lie between 0 and 1. The following definitions
are used for the species coordinates in eqs 4.2a and 4.2b1

The designation “eq” refers to equilibrium distributions of
the species. Equations 4.2a and 4.2b indicate that the form of
the type 1 manifolds in the Maas-Pope approximation is the
same as the exact manifold. The differences are in the functions
τ20 andτ30, which are labeled here with the superscript “MP”,
indicating the Maas-Pope approximation.

As expected,34 the Maas-Pope algorithm gives the exact
answer for the function in front of the linear term

The Maas-Pope estimate for the function in front of the
quadratic term,τ20, differs from the exact version. The function
τ20 is written as a sum over basis states

and the Maas-Pope and exact versions can be compared

where the “MP” once again refers to the Maas-Pope ap-
proximation and eq 4.5c shows the exact result.

The absolute error for the Maas-Pope approximation is

where

and r00
m is an integral defined in eq A.3a. The relative error is

Equations 4.6-4.8 indicate that the absolute error is first-order
in the curvature (the parametera) and second-order in the
eigenvalue ratio defined in eq 4.7c. The relative error of eq 4.8
does not depend on curvature at all and is second-order inδ
for small values ofδ. The errors indicated in these equations
are somewhat different than those calculated for systems of
ordinary differential equations,14,34because they do not depend
directly on the attractiveness of the one-dimensional manifolds.
The attractiveness depends on the ratioλ1

(1)/λ0
(1) rather thanδm

in eq 4.7c. It is also different, because the relative error does
not depend on the curvature at all.

The two-dimensional manifolds of type 1_1 were defined in
ref 1. They depend on the functionsτ20, τ21, τ22, τ30, andτ31,
which are written as expansions. The functionsτ20 andτ30 have
already been defined for one-dimensional manifolds, and the
error in the Maas-Pope estimate is the same. The Maas-Pope
estimate for theτ31 term, like theτ30, is exact. The other two
functions have the following relative error for each term in the
expansion

with δ defined in eq 4.7c and

Once again errors depend on the ratio of eigenvalues and do
not depend on curvature.

The absolute and relative errors in the Maas-Pope ap-
proximation for one-dimensional manifolds of type 1 depend
on δm, defined in eq 4.7c. The largest value ofδm is atm ) 0,
so it is expected that cases whereδ0 is smallest have the best
agreement between the exact manifold and the Maas-Pope
estimate. In ref 1, the attractiveness of the one-dimensional
manifolds for the system of this section was characterized by
the parameterR1. For manifolds of type 1, 1/R1 is smaller than
δ0 for type 1_1 manifolds and equal to it for type 1_2 manifolds
(see ref 1), and therefore the inverse of the attractiveness is an
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upper bound toδ0. So it is expected that the Maas-Pope
approximation should be reasonably accurate in those regions
of parameter space where the manifolds are most attractive (large
R). Figure 5 demonstrates that this is true. The three systems
were chosen from Figure 10 of ref 1, and all haveR1 ) 8.0, a
fairly high value. These systems have rather small values ofδ0

and so are expected to have good agreement between the exact
manifolds and their Maas-Pope estimates. The values ofδ0

are from left to right in the top panels: 0.1, 0.06, and 0.08.
The systems are characterized by the following three system
parameters1

The top row of Figure 5 shows results for three different
systems at a specific value of the projection,y2 (x ) 0.75) versus
y1 (x ) 0.25). The bottom row of Figure 5 repeats the
calculations of the top left panel at three different projections.
The solid lines in Figure 5 show the exact one-dimensional
manifolds, and the dots the Maas-Pope estimate of the
manifold. These panels indicate that the Maas-Pope algorithm
is accurate for highly attractive manifolds.

The Maas-Pope estimate of a manifold is generally less
accurate for manifolds whose attractiveness is not high, and this
is demonstrated for the one-dimensional manifold in Figure 6
for a system withR1 ) 4.0 andδ0 ) 0.25. The solid line shows
the exact manifold, the dashed line the Maas-Pope estimate
of the manifold, and the dotted lines four different initial
distributions. There are larger dots on one of the dotted
trajectories to indicate the relative slowness on the manifold.
This trajectory and the one emanating from (3.0, 3.5) on the
right of the plot clearly are attracted to the exact manifold and
miss the Maas-Pope estimate, which is still a fairly accurate
representation of the manifold.

Figure 7 shows a case where the one-dimensional manifold
is not attractive at all, but the two-dimensional manifold is. The
top panel shows ay1/y2 projection of trajectories, and it is clear
that they do not approach a one-dimensional manifold to any
significant extent, with the value ofR1 for the one-dimensional
manifold being 1.07. However, the value ofR2 for the two-
dimensional manifold is 8.24, indicating it is attractive. The
bottom panel of Figure 7 demonstrates this attraction, by
showing a number of trajectories plotted with solid lines and a
two-dimensional manifold plotted as a relatively flat surface
with a solid grid. The exact manifold is compared in the bottom
panel with the Maas-Pope estimate of the manifold, which
clearly is very inaccurate. The inaccuracy can be anticipated
because the value ofε0 is 8.24, the same value asR2. This leads
to large errors as calculated with eqs 4.9a and 4.9b. These results
are typical of the two-dimensional manifolds labeled as type
1_2 in ref 1.

The results in this section indicate that some care is necessary
for calculating one- and two-dimensional manifolds with the
Maas-Pope algorithm. Unlike the situation with manifolds for
the pure chemical-kinetics situation, the error in the Maas-
Pope estimate is not strictly due to the relative attractiveness
of the manifolds, nor does it depend on the curvature. Numerical

Figure 5. Accuracy of the Maas-Pope estimate of the one-dimensional manifolds. The top row shows a set of plots for three different values of
ú1 chosen from Figure 10 of ref 1. The triples (ú1, ú2, ú3) (eq 4.11) are from left to right in the top row: (0.1,-0.02, 0.97), (1,-0.85, 0.95), (10.0,
-8.6, 0.515). The parameter “a” is set to (γ - 2). The bottom row displays the calculation from the top left system at three other projections.

ú1 )
D1 + D2

γ + 1
(4.11a)

ú2 )
D1 - D2

γ + 1
-ú1 e ú2 e ú1 (4.11b)

ú3 ) γ - 1
γ + 1

-1 e ú3 e 1 (4.11c)

Figure 6. A less attractive one-dimensional manifold than those of
Figure 5 shown for (ú1, ú2, ú3) ) (0.1, 0.037, 0.84) anda ) 1. In this
case the Maas-Pope estimate (dashed lines) of the manifold (solid
line) is somewhat inaccurate. This two-dimensional projection was
generated aty1(x ) 0.8)/y2(x ) 0.2).
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results presented in the rest of the paper show that a Maas-
Pope estimate is accurate under many circumstances, but the
results in this subsection indicate that some care is necessary
when using the algorithm.

B. Manifolds Generated from Numerical Algorithms. The
error analysis in the previous subsection, along with Figures
5-7, demonstrated that the Maas-Pope approximation could
be accurate but also showed cases where it breaks down. This
analysis suggested that the breakdown occurs when the spectra
of different rate processes intertwine, making terms such as the
ones in eq 4.10 large and thus the error terms in eqs 4.9a and
4.9b large, even though the attractiveness,R2, is also large. The
examples in the rest of the paper avoid this situation. In this
subsection, the Maas-Pope algorithm is compared to the more
accurate, predictor-corrector method for one-dimensional mani-
folds, under conditions where it is expected to be accurate, as
a way of testing the numerical method for generating the
manifolds described in section III. For two-dimensional mani-
folds, there is no method comparable for high-dimensional
systems. Some modifications to the implementation of Fraser’s
algorithm5 from ref 14 would be necessary to make that method
reasonably efficient for these systems.

The top panel of Figure 8 compares manifolds generated
numerically with the analytical Maas-Pope manifolds from the
middle top panel of Figure 5. The dots in the top panel show
the numerically generated manifold, and the solid line the
analytical Maas-Pope approximation. The middle panel of
Figure 8 compares the Maas-Pope estimate of the manifold
(solid line) with the trajectories of the top panel of Figure 3

(dotted lines). The bottom panel shows a comparison between
a two-dimensional manifold generated with the analytical
Maas-Pope estimate and the manifold generated numerically.
This panel shows the manifold plotted as a set of contours, with
the analytical contours plotted with solid lines and the numeri-
cally generated contours plotted as series of dots. It is clear
from Figure 8 that the numerical algorithm developed in section
III generates accurate representations of the Maas-Pope
estimates of the manifolds.

Numerically generated Maas-Pope estimates for one-
dimensional manifolds are compared to ones estimated with the
predictor-corrector algorithm in Figure 9. The top panel of
Figure 9 compares the predictor-corrector estimate of the
manifold (dots) with the Maas-Pope numerical manifold, which
the top panel of Figure 8 demonstrated was accurate. The top
panel of Figure 9 thus shows that for a case where the Maas-
Pope estimate is accurate the predictor-corrector offers no
advantage. However, the middle panel repeats the system of
Figure 6. Here the exact manifold is plotted as a solid line, the
predictor-corrector as a series of dots, and the Maas-Pope
estimate calculated either numerically or from eq 4.5 as a dashed
line (they agree). The middle panel of Figure 9 demonstrates
that when the Maas-Pope algorithm is inaccurate, the predic-
tor-corrector can be accurate. The bottom panel of Figure 9
compares the Maas-Pope estimate for the manifold (dots) and
the predictor-corrector (solid line) for the case of the middle
panel of Figure 8. Here again, the predictor-corrector and
Maas-Pope estimates agree.

Reference 4 discussed a generic relaxation scenario, as did
Appendix A of ref 1, but the results of ref 1 and the present
paper show that there is a limit to the attractiveness of manifolds
from this scenario. It is also the case that the relaxation pathways

Figure 7. A situation where a one-dimensional manifold is not
attractive shown in the top panel. However there is an attractive two-
dimensional manifold as shown in the bottom panel. Individual
trajectories are plotted as solid lines, and the exact two-dimensional
manifold in the bottom panel is drawn with dotted lines and is very
attractive (R2 ) 8.2). The Maas-Pope estimate of the surface drawn
with dashed curves is extremely inaccurate. This inaccuracy can be
anticipated from eq 4.9. (ú1, ú2, ú3) ) (10,-0.2, 0.33) anda ) 2.0 for
this case. The top panel was generated with ay1(x ) 0.25)/y2(x ) 0.75)
projection. The three-dimensional projection in the bottom panel was
generated aty1(x ) 0.25)/y1(x ) 0.60)/y2(x ) 0.37).

Figure 8. The Maas-Pope estimate vs exact manifold in the top and
bottom panel for one-dimensional (top) and two-dimensional manifolds
(bottom) for the nonlinear system with an exact manifold. The solid
lines show the exact, and the dots show the Maas-Pope estimates.
The middle panel compares the Maas-Pope manifold with trajectories
for the reaction-diffusion equation for the association reaction (eq 2.5).
The top panel is ay1(x ) 0.25)/y2(x ) 0.75) projection, and the middle
panel is ay1(x ) 0.59)/y2(x ) 0.19) projection. The bottom panel was
generated with ay1(x ) 0.25)/y1(x ) 0.75)/y2(x ) 0.39) projection.
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may be very complicated and difficult to dis-entangle, so a true
representation of a hierarchy is difficult to analyze away from
equilibrium, where linearization is less informative. However,
there are situations where it is possible to observe a hierarchy,
and Figure 10 demonstrates this. In Figure 10, the two-
dimensional manifold calculated with the Maas-Pope algorithm
is plotted as a grid of dotted lines, and the one-dimensional
manifold calculated with the algorithm is plotted as a thick solid
line. The time propagation of an initial distribution is plotted
as a thinner solid line. Figure 10 demonstrates that the
distribution first lands on the two-dimensional manifold before
it reaches the one-dimensional manifold on the way to equi-
librium (large solid dot). The near-equilibrium value ofR1 is
8.0 for the one-dimensional manifold, andR2 is 2.6 for the two-
dimensional manifold. The difference in attractiveness is evident
away from equilibrium, because the thin line is much more

strongly attracted to the one-dimensional manifold than the two-
dimensional manifold.

This subsection and the previous one demonstrate that the
numerical procedure to generate a Maas-Pope estimate of the
manifold is essentially an exact realization of the analytical
version of the same estimate. Although the Maas-Pope estimate
of a manifold is generally accurate, the predictor-corrector
method is more accurate under conditions where a manifold is
not very attractive. No attempt has been made in this paper to
generate two-dimensional manifolds in a way that is more
accurate than the Maas-Pope algorithm. Because of compu-
tational complexity, Fraser’s iterative method5 needs to be
modified to make it useful for two-dimensional and higher
manifolds. Numerical versions of this algorithm as developed
in ref 14 are being considered but have not been developed as
yet.

V. Chain-Branching System

This is a system studied earlier by Hadjinicolaou and
Goussis22 and is based on the chain-branching mechanism of
Troutman-Dickenson35

The reaction-diffusion equations describing the active species
of the system are

This system is a model for an imperfectly stirred reactor, as
noted in ref 22. The same variable names are used here for the
chemical species, but other designations have been changed.
The rate constants are chosen to be the same as one of the
numerical examples in ref 22,k1 ) 1, k2 ) 103, andk4 ) 106,
with k3 varied as it was in ref 22, where the ratio ofk2 andk3

was singled out as a significant parameter. The boundary
conditions are the same as in ref 22, fixed atx ) 0 (R1 ) R2 )
0, andM1 ) 1.0), and no flux atx ) 1.0 (eq 2.6). The diffusion
constants,D, are chosen to be equal in all calculations reported
here, but unlike ref 22, they are not always 1.0. ChangingD is
equivalent to changing the length scale, by making the right
boundary different thanx ) 1.0.

It is not clear over what range of the full set of parameters
that the system of eq 5.2 possesses strongly attractive one- and
two-dimensional manifolds, and only a limited range of
parameter space is studied that is consistent with ref 22. Figure
11 shows a set of calculations of the attractiveness of one- and
two-dimensional manifolds in the vicinity of the equilibrium.

Figure 9. Plots comparing the exact manifold (solid line), predictor-
corrector (dots), and Maas-Pope estimates (dotted line in middle panel).
The plots demonstrate that the predictor-corrector algorithm makes
an accurate estimate of the manifold in the middle panel even when
the Maas-Pope estimate is inaccurate. From top to bottom the
projections in this figure are:y1(x ) 0.25)/y2(x ) 0.75),y1(x ) 0.25)/
y2(x ) 0.75), andy1(x ) 0.59)/y2(x ) 0.19).

Figure 10. Hierarchy of attractive manifolds for the association reaction
case where the two-dimensional manifold is somewhat attractive (R2

) 2.6) and the one-dimensional manifold is more attractive (R1 ) 8.0).
The projection used in the figure isy1(x ) 0.6)/y1(x ) 0.3)/y2(x ) 0.2).
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Results for three different diffusion constants are presented over
a large range of the rate constant,k3. The solid lines are values
for the one-dimensional manifolds, and the dotted lines are for
two-dimensional manifolds. The attractiveness,R, is defined in
the usual manner (eqs 2.12 and 2.13). Once again, all eigen-
values have negative real parts, andλ0 is the eigenvalue that
has the lowest magnitude.

Figure 11 demonstrates that while much of parameter space
has either attractive one- or two-dimensional manifolds, there
are parameter ranges where the attraction is low for smallD,
which is consistent with ref 1. Several systems with attractive
one-dimensional manifolds are studied in Figure 12, which
demonstrates that the attractiveness exhibited near equilibrium
in Figure 11 extends away from equilibrium. These plots show
a one-dimensional manifold as a solid line and a set of results
for different initial distributions as dashed lines, which are
attracted to the one-dimensional manifolds. The headings list
the values ofD and k3. The manifolds were calculated from
the Maas-Pope algorithm of section III, and the results indicate
that it is very accurate in this case. As noted above, the
relaxation can be quite complicated for the systems studied here,
because they are infinite-dimensional. The trajectories shown
in Figure 12 were generally chosen to be in their last stages of
relaxation to the manifold, and this complexity is not always
evident in the panels of Figure 12 and other figures in this paper.

The accuracy of the Maas-Pope approximation is confirmed
in Figure 13, which compares the Maas-Pope estimates to the
more accurate predictor-corrector results. These panels show
the predictor-corrector results as solid lines and the Maas-
Pope results with a set of dots. The two methods generate
manifolds that lie on top of each other.

Figure 11 demonstrated that two-dimensional manifolds are
more attractive than one-dimensional manifolds atD ) 10 for
high k3. Figure 14 shows results for one of these cases,D )

10, k3 ) 5 × 106. Results for the propagation of five initial
distributions are presented in Figure 14, along with the projection
of the plane defined by the first two eigenvectors ofJ. This
figure demonstrates that there is no attractive one-dimensional
manifold (R1 ) 1.0), but a fairly attractive two-dimensional
manifold is present (R2 ) 5.9 near equilibrium).

VI. Ozone System

This section investigates an ozone mechanism studied earlier
in refs 17 and 25. The same rate parameters are used as in these
earlier papers, but simulations are run under isothermal condi-
tions. There are three species: O, O2, and O3. As in the earlier
references, it is assumed that diffusivity is spatially constant.
In the present study several different sets of equal diffusion
constants are investigated, with the spatial domain set to 1.0.
Some results are presented for unequal diffusion constants, as
was done in Figure 1 of the first paper1. The system in that
figure had different fixed boundary conditions atx ) 0, that
are set to the following here: [O] (x ) 0) ) 0.0, [O2] (x ) 0)
) 2 × 10-5 mol/cm3, [O3](x ) 0) ) 1 × 10-5 mol/cm3.

The reaction-diffusion system under these conditions is

The F values are described by the same mass-action kinetics
used throughout this paper and are presented more completely
in refs 17 and 25.

The attractiveness of one- and two-dimensional manifolds
near equilibrium is presented in Figure 15 as a function of
temperature at several different values ofD and for one case
where theD values are different (bottom). Over most of the
temperature range there are attractive one- and two-dimensional
manifolds. This case is like the reversible association reaction
of section II, because the chemical kinetics possesses a constant
of motion due to conservation of the elements

Results for a select set of temperatures andD values are
presented in Figure 16. Figure 16a shows results forT ) 880
K andD ) 100, Figure 16b has results forT ) 1200 andD )
100, and Figure 16c presents results forD )1000 andT ) 1100
K. These plots are two-dimensional projections, which are
described in the figure caption. The attractiveness of the
manifolds can be read off Figure 15 and are from top to
bottom: (a)R1 ) 9.0, (b)R1 ) 9.0, and (c)R1 ) 5.0. Results
for four different distributions are shown in each panel of Figure
16 as dashed lines, and an estimate of the one-dimensional
manifolds using the Maas-Pope algorithm is plotted as thicker
solid lines. Figure 16 demonstrates that trajectories are attracted
strongly to the manifold and that the Maas-Pope estimate of
the manifold is accurate.

As indicated in Figure 15, there are temperature ranges where
two-dimensional manifolds are more attractive than one-
dimensional manifolds near equilibrium. Figure 17 shows results
for one of these cases. The temperature is 600 K andD ) 1000.

Figure 11. Attractiveness of one-dimensional (solid line) and two-
dimensional manifolds (dotted lines) as defined in eqs 2.12 and 2.13
shown for three values ofD and a range of values ofk3.

∂[O]
∂t

) FO + D1

∂
2[O]

∂x2
(6.1a)

∂[O2]

∂t
) FO2

+ D2

∂
2[O2]

∂x2
(6.1b)

∂[O3]

∂t
) FO3

+ D3

∂
2[O3]

∂x2
(6.1c)

[O] + 2[O2] + 3[O3] ) c (6.2)

Reaction-Diffusion Equations: Numerical Analysis J. Phys. Chem. A, Vol. 110, No. 16, 20065267



The attractiveness of the two-dimensional manifold isR2 ) 8.98.
In this figure results are shown for six distributions as solid
lines, and an estimate of the two-dimensional manifold calcu-
lated with the Maas-Pope algorithm is shown as a dotted-line
grid. Because the attractiveness of the one-dimensional manifold
is so weak (R1 ) 1.001) there is no apparent attraction to it.
But it is clear from Figure 17 that the two-dimensional manifold
is attractive away from equilibrium.

The Maas-Pope algorithm is a convenient method to generate
manifolds, and we compare it to the more accurate but more
time-consuming predictor-corrector method. In Figure 18, the
three manifolds from Figure 16 are once again plotted, this time
as a series of dots. The predictor-corrector values of the
manifolds are plotted as solid lines in Figure 18. It is clear that
there is good agreement between the predictor-corrector
estimate and the Maas-Pope estimate, although there is some
small but noticeable disagreement at the smallest values of the
O2 concentration in the top two panels. The results in this figure

demonstrate that while it is possible to find situations (for
example, Figure 6) where the Maas-Pope algorithm is inac-
curate, it is an accurate estimate for most situations where the
manifold is very attractive.

VII. Conclusion

This paper has numerically investigated the nature of one-
and two-dimensional manifolds of several reaction-diffusion
systems as they approach equilibrium. This extends the analysis
of the first paper1 to more realistic systems and systems that
are amenable to only numerical analysis.

To extend the analysis, it was necessary to adapt two methods
for finding low-dimensional manifolds to the reaction-diffusion
cases studied here. The predictor-corrector method of ref 14
required little change, but the Maas-Pope algorithm of refs
9-11 required modifications. Because the reaction-diffusion
systems have infinite spectra, necessarily truncated numerically,

Figure 12. Trajectories (dashed lines) are presented for five sets of systems as they approach a one-dimensional manifold. The systems are from
Figure 11, and the manifolds were estimated with the Maas-Pope algorithm. The projections are listed in the axes labels, and the headings show
the values ofD andk3, with all other parameters described in the text. The top row showsR1(x ) 0.54)/M1(x ) 0.44) projections, and the bottom
row showsM1(x ) 0.44)/R1(x ) 0.08) projections.

Figure 13. Results for the same set of manifolds as Figure 12 shown here, comparing the Maas-Pope estimate (dots) with the predictor-corrector
(solid lines) estimate. Each of the panels has the same projections as those in Figure 12.
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it became important to have an algorithm that only used the
relevant eigenvectors, the so-called slow space. Once this was
done it was straightforward to develop an algorithm that was
faster, because it used eigenvector derivatives that required much
less computation. The modified algorithm ran faster by a factor
of approximately 50 for the problems studied here.

The reduction achieved with the low-dimensional manifolds
studied here is orders of magnitude greater than the reduction
from methods that reduce the number of species, because both
the number of species and the number of grid points are reduced.
For example, in many of the problems studied here the one-

dimensional manifold represents a reduction from 300 ordinary
differential equations to one.

Although the reductions outlined here are significant, they
occur at the longest times. This means that there are many
physical and chemical processes where they are not useful,
because these processes occur at shorter times. The reduction
techniques studied here could be used for more general physical
processes if they were defined locally in space. Attention to
this problem is underway.
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Figure 14. Plot showing a case where a two-dimensional manifold is
attractive, but there is no attractive one-dimensional manifold. The
parameters areD ) 10 andk3 ) 5 × 106. The values ofR1 ) 1.0 and
R2 ) 5.9 (eqs 2.12 and 2.13). The projection shown in this plot isR1(x
) 0.54)/M1(x ) 0.44)/R1(x ) 0.90).

Figure 15. Attractiveness for the ozone example near equilibrium is
shown for one-dimensional (solid lines) and two-dimensional (dotted
lines) manifolds plotted vs temperature for several different values of
D. The top three panels have equalD values, and the bottom panel
shows unequalD values.

Figure 16. Plots showing how trajectories are attracted to one-
dimensional manifolds for the ozone system. The dotted lines show
trajectories, and the solid lines show manifolds estimated with the
Maas-Pope algorithm. TheD values andT values vary for each plot,
but theD values are equal for each case. The values ofD andT are:
(a) D ) 100,T ) 880 K, (b)D ) 100,T ) 1200 K, and (c)D ) 1000,
T ) 1100 K. Concentrations are in mol/cm3. The projections for the
top two panels arey1(x ) 0.46)/y2(x ) 0.46), and for the bottom panel
y1(x ) 0.46)/y2(x ) 0.68).

Figure 17. At D ) 10 000 andT ) 600 K the one-dimensional
manifold is not particularly attractive (Figure 16) (R1 ) 1.0001), and
the two-dimensional manifold is (R2 ) 8.995), as demonstrated in the
figure. The projections shown in this figure arey1(x ) 0.46)/y1(x )
0.68)/y2(x ) 0.46).
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Appendix A: Exact Realization of Maas-Pope
Approximation for a Nonlinear Reaction-Diffusion
System

For the system of eq 4.1 it is possible to analytically generate
the Maas-Pope approximation to the exact manifolds presented
in ref 1. The distributions fory1 andy2 are expanded in terms
of the eigenvectors of the diffusion equation

and

These expansions are inserted into eq 4.1 giving

The Jacobian matrix of the system in eq A.2 is written in the
following form The blocks have the following matrix elements

There are two sets of eigenvalues

For one-dimensional manifolds of type 1 (ref 1) the lowest
eigenvalue isλ0

1. The right eigenvectors are written as

It is straightforward to find the eigenvectors. For the algorithm
outlined in section III, the following eigenvector is needed for
one-dimensional manifolds of type 1

The idea behind the Maas-Pope algorithm9 is that a one-
dimensional attractive manifold is such that the velocity vector
of the system (the right-hand side of eq A.2) lines up along
this eigenvector. The calculation of the conditions that need to
be satisfied are first described for theR11 components of the
eigenvector

Equation A.9 is merely a statement that the velocity vector
component (right-hand ratio) lines up along the proper eigen-
vector component (left-hand ratio). The values ofR11 can be
substituted from eq A.8a

Figure 18. Plots comparing the manifolds from Figure 17 (dots here)
generated by the Maas-Pope estimate with predictor-corrector results
(solid lines). The projections are the same for each panel as they are in
Figure 16.
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This indicates that all of theb1m values are zero exceptb10.
The results for theb1m values can be used to solve for the

b2m values employing the correct components ofR21 and the
corresponding velocity components

The velocity components defined on the right-hand side of eq
A.2b are simplified because all of theb1 values are zero except
b10. The R21 components in eq A.11b are defined in eq A.8b,
with the summation truncated to a single term, because only
b10 is nonzero. Theb2m values are now

with

and

The Maas-Pope approximation for two-dimensional mani-
folds of type 1_1 is defined in the following manner. The
velocity vector is lined up in the plane of the first two right
eigenvectors

Note that it is assumed that the “progress variables” areb10

andb11. Equation A.14a is rewritten substituting the velocities

from eq A.2

Equation A.15 can be used to solve forb1m

The solution forb1m yields the following solution forb2m

Through the use of eq A.2a and the solution forb1m in eq A.16,
the b2m velocities can also be written as

Equations A.17b and A.18 can be used to solve forb2m, which
is written as

using these relationships

The coefficients in eq A.19 have the following form
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